سفارش تبلیغ
صبا ویژن
 
وب سایت جامع دانش قابل استفاده برای دانشجویان و مهندسین و مدیران
درباره وبلاگ


http://www.telegram.me/sajjadshafiee_ir . . . رشته مهندسی پلیمر نسبت به رشته‌های مهندسی دیگر تقریبا جوان است و شکوفایی آن از زمان جنگ جهانی دوم آغاز شده است. اما به دلیل کاربرد روزافزون پلیمر در صنایع مختلف، این رشته به سرعت رشد کرده و امروزه جزو یکی از رشته‌های مهم کشورهای صنعتی پیشرفته می‌باشد. هدف رشته مهندسی صنایع پلیمر تولید کلیه محصولات پلیمری از قبیل لاستیک، پلاستیک، الاستومر، چسب‌ها، رزین و سایر مواد مورد نیاز صنعت است. برای مثال طراحی و تولید تایر ماشین در صنایع لاستیک، لوله‌های پلی‌اتیلن در صنایع پلاستیک و انواع فایبرگلاسها در کامپوزیت به یاری متخصصان مهندسی صنایع پلیمر انجام می‌گیرد یا حتی در این رشته شکل‌دهی رزین‌ها نیز مطرح است که برای مثال می‌توان به ساخت ملامین اشاره کرد.حتی کیسه‌های پلاستیکی و روکش ظروف نچسب ( تفلون ) از مواد پلیمری می‌باشند. در واقع در رشته مهندسی صنایع پلیمر هر آنچه که به این مواد بر می‌گردد، مورد مطالعه و بررسی قرار می‌گیرد. البته پلیمرها فقط کاربرد صنعتی ندارند بلکه کاربرد پزشکی نیز دارند. مثلا اگر کشکک زانوی یک نفر آسیب ببیند و ترمیم آن امکان‌پذیر نباشد، شبیه به همان کشکک زانو را با مواد پلیمری درست می‌کنند و بر روی زانو قرار می‌دهند و یا دندان مصنوعی و لنزهای چشمی همه از مواد پلیمری ساخته می‌شوند که به این مواد پلیمری «پلیمرهای زیستی» می‌گویند. فرصت‌های شغلی: در صنعت پوشاک پلیمرها در تولید پاپوش‌ها، تن‌پوشها و کف‌پوشها بسیار موثر هستند. در صنایع حمل و نقل زمینی (خودروسازی، قطار و ... )، هوایی ( هواپیما و بالگرد) و دریایی (کشتی‌ها و ...) پلیمرها حضوری چشمگیر دارند، و بالاخره در صنایع نظامی، پزشکی، کشاورزی و بسته‌بندی کاربرد مواد پلیمری بسیار گسترده است.بدر صنعت پوشاک نیز پلیمرها در تولید پاپوش‌ها، تن‌پوشها و کف‌پوشها بسیار موثر هستند. در صنایع حمل و نقل زمینی (خودروسازی، قطار و ... )، هوایی ( هواپیما و بالگرد) و دریایی (کشتی‌ها و ...) پلیمرها حضوری چشمگیر دارند، و بالاخره در صنایع نظامی، پزشکی، کشاورزی و بسته‌بندی کاربرد مواد پلیمری بسیار گسترده است. باتوجه به کاربرد وسیع پلیمرها در صنایع، فارغ‌التحصیلان این رشته توانایی‌های کافی در زمینه‌های ایجاد و برنامه‌ریزی واحدهای تولیدی تبدیل پلیمر خام به مواد مصرفی و اشتغا
آرشیو وبلاگ
صفحات وبلاگ
نویسندگان

کشف مهم بیوپرینتی: بافت زنده چاپ شده توسط محققان برای پیوند‌های کاربردی کشف مهم بیوپرینتی: بافت زنده چاپ شده توسط محققان برای پیوند‌های کاربردی

 

 

مترجم: ایرج علیزاده
منبع:راسخون




 

از میان تمام صنعت‌هایی که تکنولوژی چاپ سه بعدی ناظر بر تحول آنهاست، همه‌ی آنها نتوانسته‌اند تاثیر عمیقی که رشته پزشکی از فناوری چاپ سه بعدی داشته را تجربه کنند.
دانشمندان و محققان در سرتاسر این کره هنوز در مرحله ی زودرسی از نوآوری بر روی توسعه و چاپ سه بعدی مواد زیست سازگار برای بهبود وضعیت جسمانی بشر هستند. به نظر می‌رسد فناوری بیوپرینت با یک پیوند بیوفیشال غده‌ی تیرویید به یک طبل گوش پرینت شده سه‌بعدی عملکردی گام بلندی به سمت زیرساخت‌های استوار برداشته است.یک تیم تحقیقاتی به تازگی موفق به ابداع آنچه که یکی از بزرگترین ابداعات در زمینه‌ی زیست‌پرینت خواهد بود یعنی یک چاپگر سه بعدی که قادر است بافت‌های جایگزین کاربردی تولید کند.
هرچند این ضرورتا اولین باری نیست که که یک بافت زنده چاپ می‌شود، اما اولین باری است که دانشمندان موفق به تولید مصالح بافت با اندازه و قدرت مناسب و موردنیاز یک پیوند شدند. اینکه بیوپرینتر قادر به پرینت ساختارهای ظریف و کوچک نظیر رگ‌های خونی و آوندی یک راه‌ حل برای این تجربه بود ولی امکان فراهم کردن این بافت چاپ شده را با مواد مغذی و اکسیژن بعد از پیوند خواهد داد. این سیستم بیوپرینت جدید توسط تیم محققی که نزدیک به ده سال طول کشید تا توسعه پیدا کند، طراحی شد و به نظر می‌رسد که این ایده را که بیوپرینت سه بعدی برای مدتی در زمان حال مختل شده بود را به زانو درآورده است.
به گفته دکتر آتلا سلول‌ها نمی‌توانند بدون ملزومات رگه‌های خونی که از 200 میکرون کوچک‌تر است (0.07 میکرون). که رقم بسیار ناچیزی است. و این حداکثر فاصله است. نه فقط برای فرایند چاپ بلکه این طبیعت آنهاست.
با استفاده از مواد پلیمری بافت چفت‌بندی چاپ و سپس در سلول‌های زنده توسط ژل آبی غیر سمی کار گذاشته می‌شود. کانال‌های ریز میکروسکوپی نیز طراحی شده اند که بسیار ریزاند و از نظر ساختمانی به اندازه‌ای محکم هستند که اجازه عبور موادغذایی و اکسیژن را از طریق این ساختارهای سلولی می‌دهند. تاکنون بافت بیوفیشال فقط روی حیوانات آزمایش شده است، پیوند یک گوش به اندازه گوش انسان به پوست یک موش آزمایشگاهی. هرچند نمی‌توان تصور کرد که این موش آزمایشگاهی بیچاره چقدر شکل طبیعی خود را از دست داده، تیم تحقیقاتی ثابت کرده است که بعد از دو ماه گوش پیوند زده شده، هنگامی که بافت غضروفی و رگه‌های خونی به شکل موفقیت‌امیز در درون پیوند قرار گرفته باشند، هنوز شکل طبیعی خود را حفظ کرده است.
یک تیم تحقیقاتی دیگر همچنین از ریشه سلول‌ها برای بیوپرینت کردن اجزا استخوان فک استفاده می‌کند، که آنها هم روی موش‌های آزمایشگاهی پیوند زده شدند. پنج ماه بعد از پیوند روی موش‌ها ساتمان ریشه این سلول‌های چاپ شده توسط سیستم چاپ سه بعدی، شروع به شکل دادن بافت آوندی استخوانی کردند که استعداد بالقوه این فناوری را برای بازسازی‌ها و پیوندهای مربوط به چهره در آدمی را تایید می‌کند.
با استفاده از توانایی شکل دادن و بیوپرینت بافت ساختاری سالم دکتر آتلا و تیم تحقیقاتش بافت چاپ‌شده‌ای را طراحی کردند که به نظر می رسد اندازه وقدرت کاملا مناسب و کاربرد لازم برای استفاده در بشر را دارد.
با آنکه این تحقیق دست کمی از یک کشف بزرگ ندارد دکتر آتلا اعتراف می‌کند که این تیم راه درازی در پیش دارد تا اعضا تولید شده توسط بیوپرینت برای استفاده انسان مورد استفاده قرار گیرد. دکتر آتلا افزود ما هم‌اکنون به دنبال امنیت این موارد هستیم و باید تست‌های زیادی روی آن انجام دهیم.



موضوع مطلب :
یکشنبه 98 شهریور 10 :: 5:29 عصر ::  نویسنده : مهندس سجاد شفیعی

بخیه هوشمند بر بهبودی نظارت می‌کند بخیه هوشمند بر بهبودی نظارت می‌کند

بخیه

محققان پوشش‌هایی را ایجاد کرده‌اند که بخیه‌های ساده را به نخ‌های "هوشمند" با تکنولوژی پیشرفته تبدیل می‌کنند که می‌توانند درجه حرارت بدن، PH و سایر جنبه‌های زخم را که با هم ترکیب شده‌اند، کنترل کنند.
 
اگر زخم‌تان را به نزد پزشک ببرید پس از معاینه، معمولا زخم را بخیه زده و بانداژ می‌کنند. اما این پوشش امکان دیدن زخم شما را مختل می‌کند و اگر برای زخم مشکلی ایجاد شود می‌تواند آن را بدتر کند. در حال حاضر، محققان نخ‌های بخیه "هوشمند" را توسعه داده‌اند که می‌تواند نظارت بر روند بهبودی زخم را کنترل کند. نسخه‌های آینده حتی ممکن است قادر به ارائه مواد بی‌حسی برای کمک به بهبود زخم باشند.
 
بخیه‌ها ابزاری هستند که برای بستن زخم استفاده می‌شود. تکنولوژی به کار رفته در آنها بسیار کم است. در بسیاری از موارد، بخیه از مواد طبیعی مانند پنبه یا ابریشم ساخته شده است. سایر بخیه‌ها از نوع پلاستیکی ساخته شده‌اند. برخی از آنها حتی از موادی ساخته شده‌اند که در طول زمان از بدن دفع می‌شود. با این حال، هدف آنها همان است و صرف نظر از اینکه آنها از چه چیزی ساخته شده‌اند، آنها زخم‌های بزرگ و یا برش‌ها معمولی را به هم متصل می‌کنند تا بتوانند آنها را درمان کنند.
 
اما گاهی اوقات این روش برای ترمیم زخم‌ها موثر نیست زیرا بافت‌ها می‌توانند دچار انقباض شوند و این باعث می‌شود که بخیه‌ها سفت شوند. این اتفاق می‌تواند موجب ایجاد یک زخم زشت شود یا زخم را آلوده کند و این باعث می‌شود که بافت قرمز شود. سمیر سونکوسال می‌گوید: اگر این کار باعث می‌شود درد احساس نشود و حتی ممکن است عفونت زخم به دلیل بودن آن در زیر باند پنهان شود. او که از اعضای دانشگاه توفست در مدفورد، ماساچوست است به دنبال راهی برای تبدیل بخیه به سنسور بود. این بخیه‌های ویژه می‌توانند گزارش کنند که چه اتفاقی در زیر باند در حال وقوع است. آنها حتی می‌توانند داروهای مورد نیاز را به داخل بدن ارسال کنند.
 
سونکوسال می‌گوید که مشکل ساخت یک بخیه هوشمند در بخشی است که اجازه می‌دهد به آن برق وارد شود. بنابراین، محققان یک نخ پنبه‌ای را با مواد هدایت کننده پوشش دادند. برخی از پوشش‌ها می‌توانند کشش بافت را حس کنند و در نتیجه می‌توانند تورم را نشان دهند. در موارد دیگر، پوشش‌ها می‌توانند pH یا اسیدیته بافتی که از طریق آن عبور می‌کنند را اندازه گیری کنند. تغییرات pH ممکن است نشان دهنده ایجاد یک عفونت باشد. این تیم بعضی اوقات سنسورهای کوچکی را برای اندازه گیری دمای بدن به این بخیه‌ها اضافه کرد. این سنسورها گرمای زخم را تشخیص می‌دهند که ممکن است از علایم عفونت باشد.
 
همانطور که هر یک از این صفات تغییر می‌کنند (کشش، درجه حرارت یا pH)، تغییری جزئی در مقاومت الکتریکی نخ ایجاد می‌شود. سونکوسال توضیح می‌دهد که این به نوبه خود تاثیر زیادی بر جریان الکتریکی هدایت شده می‌دهد. هر گونه تغییر در مقاومت می‌تواند توسط دستگاه مشاهده و نظارت شود. این دستگاه یک جریان الکتریکی کوچک را به نخ‌های بخیه می‌فرستد که ممکن است بر روی دست یا بدن باشد. پس از آن دستگاه می‌تواند اطلاعاتی را که از بخیه به صورت بی سیم به کاربر یا کامپیوترهای مجاور ارسال کند تا مورد تجزیه و تحلیل قرار گیرد.
 
محققان در 18 ژوئیه در کنفرانس Microsystems & Nanoengineering، ابزار هوشمند خود را به طور آنلاین معرفی کردند.
 
جان راجرز می‌گوید، تیم وی یک راه جالب برای جاسازی سنسورها به طور مستقیم در پوست بیمار ایجاد کرده است. او یکی از دانشمندان مواد در دانشگاه Northwestern در ایوانستون است (یک دانشمند مواد می‌تواند مواد جدید را طراحی و یا مورد تجزیه و تحلیل قرار دهد). چنین دستگاه‌هایی که برای استفاده در داخل بدن طراحی شده‌اند می‌توانند اطلاعات دقیق تری را جمع آوری کنند.
 
سونکوسال می‌گوید، یک روز ممکن است این بافت‌های هوشمند برای نظارت بر پروتئین‌های خون مورد استفاده قرار گیرند که نشان می‌دهد بهبودی در حال انجام است. او می‌افزاید: یا حتی ممکن است در آینده میزان قند خون افراد مبتلا به دیابت را بتوانند با این روش کنترل کنند.
 
سونکوسال توضیح می‌دهد که پزشکان حتی ممکن است از اثر مویرگی نخ استفاده کنند. این توانایی را می‌توان برای جابجایی مایعات از یک مکان به مکان دیگر مورد استفاده قرار داد. با استفاده از این بخیه‌ها زخم مایع‌های مچ دست می‌توانند به خارج از بدن و زخم حمل شوند. چنین داروهایی ممکن است با عفونت مبارزه کنند یا به زخم کمک کنند تا سریعتر بهبود یابد.
 

کلمات پر استفاده در متن

قند خون بدن: تعیین غلظت گلوکز، یک نوع قند ساده است که از طریق خون در بافت‌های بدن جابجا می‌شود و به عنوان سوخت استفاده می‌شود. بدن این قند ساده را از تجزیه قندها و نشاسته‌ها استخراج می‌کند. با این حال، برخی از بیماری‌ها، به ویژه دیابت، می‌توانند سبب غلظت ناسالم این ماده در بدن افراد شوند.
 
اثر موئینگی: این نیرویی است که حرکت مایع را در امتداد یک ماده جامد کنترل می‌کند. از آنجا که مولکول‌های مایع به سطح رفته و به یکدیگر جذب می‌شوند، می‌توانند همدیگر را بکشند. عمل کاپیلاری توضیح می‌دهد که چطور اسفنج‌ها مایعات را به خود جذب می‌کنند.
 
دیابت: بیماری که در آن بدن انسولین هورمون را بیش از حد از (که به عنوان دیابت نوع 1 شناخته می‌شود) و یا کمتر از حد مورد نیاز تولید می‌کند و یا وجود انسولین بیش از حد را (که به عنوان دیابت نوع 2 شناخته می‌شود) نادیده می‌گیرد.
 
مقاومت الکتریکی: تمایل یک ماده برای هدایت جریان الکتریکی به جهت مخالفت آن. این مقاومت (معمولا در واحدهای شناخته شده به عنوان اهم) مقداری از انرژی الکتریکی را به گرما تبدیل می‌کند.
 
جریان الکتریکی: معمولا از حرکت ذرات باردار منفی، به نام الکترون ایجاد می‌شود.
 
عفونت: بیماری که می تواند از یک ارگان به ارگان دیگر گسترش یابد.
 
علم مواد: مطالعه نحوه ساختار اتمی و مولکولی مواد با خواص کلی آنها است. دانشمندان مواد می توانند مواد جدید را طراحی و یا مواد موجود را تجزیه و تحلیل کنند.
 
 

منبع: سایت ساینس نیوز فور استیودنتس





موضوع مطلب :
شنبه 98 اردیبهشت 14 :: 6:35 عصر ::  نویسنده : مهندس سجاد شفیعی

نانوتکنولوژی، انقلاب صنعتی جدید نانوتکنولوژی، انقلاب صنعتی جدید

نویسنده: دکتر کریستوف لوترواسر
مترجم: حبیب الله علیخانی

گفته می شود که نانوتکنولوژی نیروی محرکه برای انقلاب صنعتی جدید است. میزان سرمایه گذاری بخش های خصوصی و عمومی در این زمینه، در حال افزایش است. سرمایه گذاری ها بر روی تحقیقات عمومی در این زمینه به 3 میلیارد یورو رسیده است اما میزان سرمایه گذاری در بخش خصوصی بیشتر است و سرعت سرمایه گذاری نیز قابل توجه می باشد. نانوتکنولوژی از سویی همگرایی مربوط به علوم می باشد و از سوی دیگر، رشد تنوع در کاربردهای این زمینه، منجر به افزایش پتانسیل نانوتکنولوژی شده است. در حقیقت، بزرگترین اثر این علم ممکن است به واسطه ی ترکیب غیر منتظره ی جوانب علمی مجزا، حاصل شود دقیقا مشابه با اینترنت و کاربردهای بی شمار آن که در حقیقت به دلیل همگرایی تلفن و کامپیوتر ایجاد شده است. نانوتکنولوژی نیروی محرکه ی اصلی برای تغییر در شکل محیط های تجاری مربوط به تمام بخش های صنعتی می باشد. اندازه ی بازار برای محصولات مربوط به نانوتکنولوژی هم اکنون با محصولات بیوتکنولوژی قابل مقایسه می باشد. این در حالی است که نرخ رشد مورد انتظار در طی سال های آینده، بیشتر می باشد. در همین زمان، محققین دغدغه هایی در زمینه ی بلوک های ساختاری اساسی مربوط به نانوتکنولوژی دارند. در حقیقت ذرات کوچکتر از یک میلیاردیم متر، موجب افزایش ریسک سلامتی و خطرات محیط زیستی، می شود. به منظور کاهش این ریسک ها، باید روش های پیشگیرانه ای را بر اساس تحقیقات ریسک و مدیریت ریسک انجام دهیم و بدین صورت میزان آسیب ها و خطرات حاصله را به حداقل برسانیم.
این مقاله آنالیزهایی در مورد فرصت ها و ریسک های مربوط به نانوتکنولوژی را مطرح می کند. تفاوت مواد در مقیاس ابعادی چیست؟ در حقیقت مواد نانومتری به دلیل داشتن مساحت سطح بالاتر نسبت به جرم، می توانند به صورت شیمیایی فعال تر باشند. بدین صورت استحکام این مواد و سایر خواص آنها نسبت به مواد بالک، متفاوت می باشد. علاوه بر این، در زیر 50 نانومتر، قوانین مربوط به فیزیک کلاسیک تحت تأثیر اثرات کوانتمی قرار می گیرد. این مسئله موجب ایجاد خواص نوری، الکتریکی و مغناطیسی متفاوت، در ماده می شود.
مواد نانومقیاس دهه های متمادی است که در کاربردهایی از جمله، شیشه ی پنجه، نورگیر و آفتاب گیر ماشین و رنگ ها، استفاده می شوند. امروزه، به هر حال، همگرایی مربوط به اصول علمی (شیمی، بیولوژی، الکترونیک، فیزیک، مهندسی و ...) منجر به افزایش کاربردهای این مواد در فرایندهای تولید، چیپ های کامپیوتری، تشخیص های پزشی و مرافبت های سلامت، انرژی ، بیوتکنولوژی، کاوش های فضایی، امنیت و ... شده است. بنابراین، به دلیل اینکه نانوتکنولوژی در طی سال های اخیر، اثر قابل توجهی بر روی اقتصاد و اجتماع ایجاد کرده است، رشد اهمیت این مسئله در دراز مدت، قابل توجه بوده است.
نانوتکنولوژی از سویی همگرایی مربوط به علوم می باشد و از سوی دیگر، رشد تنوع در کاربردهای این زمینه، منجر به افزایش پتانسیل نانوتکنولوژی شده است. در حقیقت، بزرگترین اثر این علم ممکن است به واسطه ی ترکیب غیر منتظره ی جوانب علمی مجزا، حاصل شود دقیقا مشابه با اینترنت و کاربردهای بی شمار آن که در حقیقت به دلیل همگرایی تلفن و کامپیوتر ایجاد شده است.
میزان فروش محصولات نانوتکنولوژی جدید در طی یک دهه از میزان 0.1 % به بیش از 15 % در سال 2014 رسیده است. این ارقام اشاره به محصولاتی دارند که با مشارکت نانوتکنولوژی تولید می شوند. در بسیاری از موارد، نانوتکنولوژی تنها یک مورد اصلی است اما برخی اوقات، محصولاتی وجود دارد که در بخش خاصی از آنها، نانوتکنولوژی نمود دارد.
اولین برنده در صنعت نانوتکنولوژی، احتمالا تولید کننده ی ابزارهایی هستند که اجازه ی کار در مقیاس نانو را فراهم می آورند. با توجه به محققین این زمینه، ابزارهای نانوتکنولوژی سالانه رشد 30 % را دارند.
سه مرحله ی رشد زیر ممکن است ایجاد شود:
• در فاز کنونی، نانوتکنولوژی به صورت انتخابی در محصولات با کیفیت بالا مخصوصاً در کاربردهای اتومبیل و هوافضا استفاده می شود.
• تا سال 2009، پیشرفت های تجاری موجب می شود تا بازار با اختراع های مربوط به زمینه ی نانوتکنولوژی، پر شود. کاربردهای الکترونیک و IT از جلمه تولید میکروپروسسورها و حافظه های کامپیوتری، با استفاده از فرایندهای نانومقیاس تولید می شوند.
• از سال 2010 به بعد، نانوتکنولوژی به عنوان یک تکنولوژی معمولی در تولید بسیاری از محصولات، مورد استفاده قرار گرفت.
بخش سلامت و علوم زیستی در نهایت بر پایه ی تکنولوژی نانو تغییر می یابند و وسایل پزشکی بر پایه ی این تکنولوژی ها، تولید و عرضه خواهد شد.

سرمایه گذاری در نانوتکنولوژی

بخش مالی مربوط به نانوتکنولوژی نقش کلیدی در انتقال دانش تکنولوژی از مراکز تحقیقاتی به صنعت و بازار دارد. برای توسعه ی محصولات و فرایندهای جدید و همچنین نفوذ به بازارهای جدید، سرمایه گذاری های قابل ملاحظه نیاز است مخصوصاً در مورد فاز اولیه ی کار. یک مشارکت نزدیک تر میان جوامع مالی و شرکت های پیشرو در زمینه ی نانوتکنولوژی می تواند موجب شود تا این موانع تسهیل شود.
با به پایان رسید سال 2004، سرمایه گذاران ریسک پذیر، یک میلیارد دلار در زمینه ی نانوتکنولوژی سرمایه گذاری کردند. این میزان رشد قابل توجهی نسبت به سال های قبل دارد. این انتظار می رود که بیشتر شرکت های نانوتکنولوژی از طریق فرایند فروش تجاری، به فروش برسند.
برای سرمایه گذاری های موفق، دو جنبه باید در نظر گرفته شود. یکی از آنها زمان بندی و دیگری، انتخاب هدف، می باشد.
اعمال فرایند "دقت فنی" (technical due diligence) نیز برای جذب بازار ضروری می باشد.
مشکلات و هزینه های مربوط به زیرساخت ها در شرکت های نانوتکنولوژی نیز پیشنهاد می دهد که برندگان آینده ی این بخش، شرکت هایی هستند که به خوبی در آنها سرمایه گذاری شده باشد. در واقع در این شرکت ها، نیاز است تا محققین فنی و تخصصی بتوانند مشکلات و چالش های پیش رو را تشخیص دهند و به نحو خوب، حل کنند. علاوه بر این، زمان طولانی تجاری سازی باید به حداقل برسد تا بدین صورت، بتوان پروژه های این شرکت ها، در زمان های مناسب، تحویل و آماده شوند.

بیشتر بخوانید: درباره نانوتکنولوژی بیشتر بدانیم

 

مسائل ایمنی، محیط زیستی و سلامت در زمینه ی نانوذرات

علاوه بر مشکلات فنی و اقتصادی قابل توجه در این زمینه، یک شک و شبهه در زمینه ی ریسک های جدید و خاص مربوط به استفاده از نانوتکنولوژی نیز شروع شده است.
عبارت کلی "نانوتکنولوژی" در واقع بسیار گسترده تر از آن چیزی است که بتوان بوسیله ی آن مسائل مربوط به مدیریت ریسک و مسائل بیمه ای را حل نمود.
یک روش متمایزتر برای در نظر گرفتن تمام جوانب مدیریت ریسک مربوطه، مورد نیاز می باشد.
با توجه به جنبه ی سلامت، محیط زیست و ریسک های مربوط به ایمنی، تقریباً تمام جوانبی که در این مورد مطرح می شود، مربوط به رها شدن نانوذرات تولید شده در محیط می باشد و به نانوذرات تثبیت شده، مرتبط نمی باشد.
ریسک و مباحث ایمنی مربوط به نانوذرات رهایش یافته تنها برای یک بخش خاص از کاربردهای گسترده ی نانوتکنولوژی مطرح می شود.
مطالعه های اپیدمولوژی در مورد ذرات ریز و بسیار ریز که به صورت اتفاقی در فرایندهای صنعتی تولید می شوند، نشاندهنده ی وجود یک رابطه میان غلظت های متعارف و غلظت های کشنده، می باشد. اثرات سلامتی نانوذرات بسیار ریز بر روی مشکلات تنفسی و قلبی و عروقی، نشاندهنده ی این است که نیاز است تا تحقیقات گسترده ای بر روی نانوذرات تولیدی و اثر آنها بر روی سلامت، انجام شود.
در مطالعه های اولیه، نانوذرات تولیدی، خاصیت سمیت از خود نشان دادند. آنها می توانند به شیوه های مختلف وارد بدن انسان ها شوند و با رسیدن به اندام های حیاتی بدن، موجب تخریب آنها شوند. به دلیل اندازه ی کوچک آنها، خواص نانوذرات نه تنها از مواد بالک مشابه، متفاوت استف بلکه همچنین الگوهای برهمکنش آنها با بدن نیز متفاوت است.
یک ارزیابی ریسک برای مواد بالک، نمی تواند برای شناسایی ریسک های مربوط به نانوذرات مورد استفاده قرار گیرد.
پیچیدگی های مربوط به خواص خاص نانوذرات با توجه به سلامت و ایمنی هنوز بوسیله ی مقررات کشورها در نظر گرفته نشده است. اثر اندازه نیز در چارچوب سیاست های REACH مربوط به اتحادیه ی اروپا، در نظر گرفته نشده است. نانوذرات یک سری از موضوعات ایمنی و مشکلات قانونی را پدید می آورند که دولت ها امروزه در حال مقابله با آنها می باشند. در حقیقت این مواد نیز نیازمند قوانین محدود کننده و ارزیابی کننده می باشند.
در حال حاضر، میزان تولید نانوذرات بوسیله ی صنایع دیگر، بسیار اندک است. برخورد نانوذرات تولید شده با کارگران، موجب افزایش غلظت این مواد در بدن کارگران این بخش ها، می شود. در طی چند سال گذشته، این فهمیده شده است که مشتری های بیشتری از محصولات حاوی مواد نانومتری، استفاده کرده اند. برچسب مربوط به موادی که حاوی نانوذرات می باشند، هنوز مشخص و تدوین نشده است. این غیر قابل اجتناب است که در آینده، نانوذرات تولید شده به صورت تدریجی در محیط رها می شوند. مطالعه های انجام شده بر روی مقاومت این مواد در محیط زیست، سمیت و همچنین تجمع بیولوژیکی آنها تنها در آغاز کار است.

نانوتکنولوژی چیست و چه چیزی موجب می شود تا نانوتکنولوژی متفاوت باشد؟

یک نانومتر (nm) در واقع یک میلیاردیم یک متر است. یک تار موی انسان در حدود 80000 نانومتر عرض دارد. یک سلول قرمز خون، تقریباً 7000 نانومتر عرض دارد. یک مولکول DNA حدود 2 تا 2.5 نانومتر و یک مولکول آب تنها 0.3 نانومتر است. واژه ی نانوتکنولوژی بوسیله ی Norio Taniguchi از دانشگاه توکیو و در سال 1974 پیشنهاد شد. این فرد این نام را به منظور توصیف تولید دقیق مواد با ابعاد نانومتری، پیشنهاد کرد اما سر منشأ این مواد به سخنرانی ریچارد فایمن در سال 1959 باز می گردد. بر اساس گفته ی ریچارد فایمن، "فضاهای قابل توجهی در ابعاد کوچک وجود دارد". بر اساس سخرانی این فرد، او پیشنهاد کرد که دستکاری مستقیم اتم های منفرد به عنوان شکلی قوی تر از سنتز شیمیایی مواد، تلقی می شود. Eric Drexler از دانشگاه MIT تعریف Taniguchi از نانوتکنولوژی را نانوتکنولوژی را توسعه داد و در کتاب معروف خود با نام "موتورهای خلقت" ، ورود به عصر نانوتکنولوژی را نوید می دهد. در یک مقیاس نانویی یعنی در ابعاد کمتر از 100 نانومتر، خواص ماده می تواند به طور قابل توجهی تغییر کند. علم نانو در حقیقت مطالعه ی پدیده ها و دستکاری مواد در مقیاس اتمی، مولکولی و ماکرومولکولی، به منظور فهم و بررسی ویژگی هایی است که به طور قابل توجهی از خواص در مقیاس بزرگ، متفاوت است. نانوتکنولوژی در واقع طراحی، تشخیص، تولید و استفاده از ساختارها، وسایل و سیستم ها بوسیله ی کنترل شکل و اندازه در مقیاس نانومتر، می باشد.
نانوتکنولوژی صنعتی مدرن از دهه ی 1930 شروع شده است. در واقع در این زمان، از فرایندهایی برای تولید پوشش های نقره در تولید فیلم های عکاسی استفاده شد. در این زمان، شیمیدان ها پلیمرهایی تولید کردند که دارای مولکل های بسیار بزرگ و دارای واحدهای نانومقیاس بود. به هر حال، اولین استفاده ی شناخته شده از نانوذرات به قرن 19 و در طی سلسله ی عباسی باز می گردد. کوزه گران عرب در این زمان از نانوذرات در لعاب های خود استفاده می کردند به نحوی که اجسام تولیدی با این روش ها، دارای رنگ های متفاوتی نسبت به زاویه ی دید بودند. این مواد لوسترهای پلی کرومی نامیده می شوند. نانوتکنولوژی امروزی یعنی دستکاری برنامه ریزی شده ی مواد و خواص آنها در مقیاس نانومتری، در واقع از برهمکنش سه جریان فنی، مشتق شده است:
1. کنترل بهبود یافته و جدید بر روی اندازه و دستکاری بلوک های ساختاری در مقیاس نانومتری
2. شناسایی بهبود یافته و جدید بر روی مواد در مقیاس نانومتری
3. آگاهی یافته بهبود یافته و جدید از رابطه ی میان ساختار نانومتری و خواص و نحوه ی مهندسی این ویژگی ها.
خواص مواد در مقیاس نانومتری، به دو دلیل اصلی، متفاوت است. اول آنکه، نانومواد دارای مساحت سطح بزرگتری نسبت به مواد توده ای هستند. این مسئله موجب می شود تا ماده از لحاظ شیمیایی فعالیت بیشتری داشته باشد و استحکام و خواص الکتریکی ماده نیز تحت تأثیر قرار گیرد. دوم آنکه، در زیر اندازه ی 50 نانومتری، قوانین فیزیک کلاسیک تغییر کرده و خواص کوانتمی نمود بیشتری دارند. این مسئله موجب تغییر خواص نوری، الکتریکی و مغناطیسی می شود. این اثرات می تواند خواص فیزیکی جالب توجهی در ماده ایجاد کند و یا قابلیت ذخیره سازی و انتقال ماده را تحت تأثیر قرار دهد. همچنین این اثرات می توانند خواص بیولوژیکی ماده را تحت تأثیر قرار دهند؛ مثلا نقره در مقیاس نانومتری، یک ماده ی آنتی باکتری می شود. به هر حال، این خواص می تواند به سختی کنترل شوند. برای مثال، اگر نانومواد همدیگر را لمس کنند، به هم جوش می خورند و شکل و خواص ویژه ی آنها از بین می رود. این مسئله در مورد خواص مغناطیسی مربوط به وسایل و سنسورهای میکروالکترونیکی، صدق می کند.
در مقیاس نانومتری، شیمی، بیولوژی، الکترونیک، فیزیک، علم مواد و مهندسی شروع به همگرایی می کنند به نحوی که دیگر اصول یک علم به تنهایی قابلیت استفاده ندارد. تمام این الزامات در یادگیری و بررسی فرصت های ایجاد شده بوسیله ی نانوتکنولوژی، مشارکت دارند اما اگر علم پایه حالت همگرا داشته باشد، کاربردهای بالقوه در اصل تغییر می کند. این مسئله شامل راکت های تنیس تا پزشکی و سیستم های انرژی جدید، می شود.
این پویایی علم همگرا و کاربردهای چندگانه، بدین معناست که بزرگترین اثرات نانوتکنولوژی ممکن است از ترکیب غیر منتظره ی جوانبی ایجاد شود که قبلا مجزا بوده اند. همانگونه که اینترنت موجب همگرایی تلفن و کامپیوتر شده است.
استفاده از مطالب این مقاله، با ذکر منبع راسخون، بلامانع می باشد.
منبع مقاله :
Opportunities and risks of nanotechnologies/ Report in co-operation with the OECD international futures programme
 



موضوع مطلب :
شنبه 98 اردیبهشت 14 :: 6:34 عصر ::  نویسنده : مهندس سجاد شفیعی

ابزارهای نانویی و روش های تولید ابزارهای نانویی و روش های تولید

نویسنده: دکتر کریستوف لوترواسر
مترجم: حبیب الله علیخانی

با توجه به گفته ی Freedonia، 245 میلیون دلار ارزش بازار مربوط به ابزارهای صنعت نانو می باشد که این میزان سالانه 30 % رشد می کند. میکروسکوپ ها و ابزارهای مربوطه امروزه بیشتر مورد استفاده قرار می گیرند اما ابزارهای اندازه گیری، تولید و شبیه سازی نیز به سرعت در حال رشد می باشند. الکترونیک و علوم زیستی، پیشگامان این بازار می باشند. دو روش برای تولید مواد نانوساختار، وجود دارد. هر دوی این روش ها، ابتدا بوسیله ی صنعت نیمه رسانا مورد استفاده قرار گرفته اند. در روش بالا به پایین، یک ماده ی بزرگتر مانند یک ویفر سیلیکونی تحت فراوری قرار گرفته و کوچک تر می شود تا بدین صورت عوارض نانومتری بر روی آن باقی بماند.

میکروسکوپ ها

نانوتکنولوژی از دو نوع اصلی از میکروسکوپ، بهره می برد. اولین مورد از میکروسکوپ ها، میکروسکوپ هایی هستند که نمونه ی ثابت را با استفاده از تفنگ الکترونی با سرعت بالا، روبش می کنند. هر دو نوع از میکروسکوپ های روبشی الکترونی و میکروسکوپ عبوری الکترونی، بدین شیوه کار می کنند. گروه دوم از میکروسکوپ ها، شامل یک اسکن کننده ی ثابت هستند و نمونه در آنها متحرک است. دو میکروسکوپ از این گروه از میکروسکوپ ها، عبارتند از: میکروسکوپ نیروی اتمی (AFM) و میکروسکوپ تونل زنی- روبشی (STM).
میکروسکوپ ها یک نقش متناقض در نانوتکنولوژی دارند؛ اگر چه این ابزارها یک مورد کلیدی در یادگیری اطلاعات در مورد مواد و فرایندها می باشند، می توانند موجب تخریب نمونه نیز شوند. علت این مسئله، برخورد الکترون های پر انرژی با سطح ماده می باشد. این مسئله در مورد STM مشکل آفرین نیست اما محدودیت های دیگری نیز برای تمام میکروسکوپ ها، ذکر شده است. در واقع در برخی موارد، نیازمند آماده سازی های سخت برای نمونه می باشیم. SEM، TEM و STM نیازمند آماده سازی نمونه هستند و نمونه ی مورد استفاده در آنها باید از لحاظ الکتریکی، رسانا باشد. راه هایی وجود دارد که می توان نمونه را رسانا کرد اما این حقیقت وجود دارد که آماده سازی نیازمند صرف وقت و هزینه می باشد.

روش های سنتز از بالا به پایین و روش های پایین به بالا

دو روش برای تولید مواد نانوساختار، وجود دارد. هر دوی این روش ها، ابتدا بوسیله ی صنعت نیمه رسانا مورد استفاده قرار گرفته اند. در روش بالا به پایین، یک ماده ی بزرگتر مانند یک ویفر سیلیکونی تحت فراوری قرار گرفته و کوچک تر می شود تا بدین صورت عوارض نانومتری بر روی آن باقی بماند. بدبختانه، این روش نیازمند استفاده از فرایند لیتوگرافی است که نیازمند استفاده از ماسک هایی است که به صورت انتخابی بخشی از زیرلایه را تحت محافظت قرار می دهند. فاصله ی بین ماسک از ویفر و اندازه ی بخش های ایجاد شده در این روش، در واقع بسیار مهم می باشد و استفاده از نور فرابنفش در این روش می تواند موجب تولید عوارضی با اندازه ی 90 نانومتر شود اما این مقیاس نزدیک به حد اساسی مربوط به لیتوگرافی می باشد. با وجود این، لیتوگرافی می تواند برای ایجاد الگو بر روی زیرلایه مورد استفاده قرار گیرد و بدین صورت نانومواد تولید شود مثلا رشد کوانتوم دات ها و نانوسیم ها.
مواد نانومقیاس، همانگونه که گفته شد، برای زمان متمادی و بوسیله ی برخی از کاربردها، مورد استفاده قرار گرفته است. در بین شناخته ترین این کاربردها، می توان به شیشه های مورد استفاده در پنجره ها، اشاره کرد. این شیشه ها با استفاده از پوشش نانوذرات تیتانیم اکسید پوشش داده می شوند. این ماده با واکنش با نور خورشید، موجب تجزیه ی کثیفی ها می شود. وقتی آب با شیشه برخورد می کند، موجب خارج شدن ذرات تجریه شده از سطح می شود. نانوتکنولوژی بوسیله ی صنعت اتومبیل نیز مورد استفاده قرار گرفته است. در این صنعت از نانوتکنولوژی برای بهبود خاصیت ضربه گیری اتومبیل و بهبود خاصیت چسبندگی چسب ها، استفاده شده است. سایر استفاده ها از نانوتکنولوژی در این محصولات، عبارتند از:

عینک آفتابی

در عینک آفتابی از پوشش های پلیمری ضد انعکاس و بسیار نازک، استفاده می شود. نانوتکنولوژی همچنین موجب تولید پوشش های ضد خشی می شود که بر پایه ی نانوکامپوزیت های شفاف تولید می شوند.

پارچه ها

در پارچه ها نیز می توان از نانوتکنولوژی استفاده کرد. بدین وسیله، می توان خواصی همچون ضد آب بودن در پارچه، بهبود یابد. همچنین با استفاده از نانوتکنولوژی می توان پارچه هایی تولید کرد که در برابر چروک و یا کثیفی، مقاوم هستند. خواص مربوط به ضد آب بودن و ضد هوا بودن یک لباس اسکی، بوسیله ی پوشش دهی ایجاد نمی شود بلکه در این کاربرد از نانوالیاف استفاده می شود. این مشخص شده است که کشورهای در حال توسعه، سهم بیشتری از تولید پوشاک را به خود اختصاص داده اند و در حقیقت کشورهای توسعه یافته به دنبال تولید پارچه های با تکنولوژی بالا رفته اند. در این روش ها، نانوتکنولوژی حرف اول را می زد. پروژه های دیگری همچون تولید پارچه های با عملکردهای الکتریکی اضافی که در واقع پارچه های هوشمند نامیده می شوند، نیز مطرح می باشند. این لباس ها می توانند شامل سنسورهایی باشند که بوسیله ی آنها قابلیت ارزیابی عملکرد بدن انسان و یا رهایش دارو در زمان و مقادیر مورد نیاز، مقدور می شود.

بیشتر بخوانید: نانومواد چگونه ساخته می‌شوند؟

 

ادوات ورزشی

تولید کننده های ادوات ورزشی همچنین به سمت استفاده از نانوتکنولوژی تمایل پیدا کرده اند. یک واکس اسکی با کارایی بالا که موجب تغییر در خواص سطحی می شود، هم اکنون با استفاده از این تکنولوژی تولید و مورد استفاده قرار می گیرد. پوشش های بسیار نازک عمر مفید بیشتری نسبت به واکس ها دارند. راکت های تنیس با استفاده از نانوتیوب های کربنی تولید شده اند و بدین صورت استحکام خمشی و کششی راکت تنیس، به طور قابل توجهی افزایش یافته است. این راکت ها صلبیت بیشتری دارند و نیروی قابل توجهی را به توپ انتقال می دهند. توپ تنیس نیز با استفاده از نانوکامپوزیت های رس- پلیمر، پوشش داده می وشند تا بدین صورت عمر مفید آنها نسبت به توپ های معمولی، دو برابر شود.

کرم ضد آفتاب و مواد بهداشتی

ضد آفتاب ها و مواد بهداشتی تولید شده بر پایه ی نانوتکنولوژی هم اکنون به طور گسترده ای مورد استفاده قرار می گیرند. مشتری های این محصولات، محصولاتی را می پسندند که شفاف باشند زیرا به نظر آنها، هر چه شفافیت بیشتر باشد، خلوص و تمیزی نیز بیشتر می شود. L’Oréal فهمید که وقتی لوسیون ها تا 50 الی 60 نانومتر آسیاب شوند، آنها نور را از خود عبور می دهند. برای کرم ضد آفتاب، نانوذرات معدنی مانند دی اکسید تیتانیم چندین مزیت ایجاد می کنند. محافظت سنتی در برابر UV، در دراز مدت افت می کند. نانوذرات دی اکسید تیتانیم دارای خاصیت محافظت در برابر UV قابل قبولی برخورد می باشد و همچنین خاصیت سفیدی خود را نیز از دست می دهد. برای کرم های ضد چروک، یک کپسول پلیمری برای انتقال عوامل فعال مانند ویتامین ها به پوست، استفاده می شود.

تلویزیون ها

تلویزیون هایی که در آنها از نانوتیوب های کربنی استفاده شده است، از اواخر سال 2006 بوسیله ی سامسونگ وارد بازار شد. تولید کننده ها انتظار داشتند که این "صفحات نمایش اثر میدانی" (FED) انرژی کمتری نسبت به تکنولوژی های پلاسما و کریستال مایع (LCD) مصرف کنند. همچنین آنها انتظار داشتند که میزان کیفیت تصویر در این تلویزیون ها نیز بهبود یابد. الکترون ها در یک FED در میان یک بخش خلأ پرتاب می شوند و به لایه ی شیشه ای فسفراسانس پوشیده شده با پیکسل ها، برخورد می کنند. اما برخلاف صفحات نمایش معمولی CRT، منبع الکترونی در این نوع جدید از تلویزیون ها، کربن است. این منبع در فاصله ی یک تا دو میلی متری از شیشه ی هدف قرار گرفته است (برخلاف CRT ها که در فاصله ی 30 سانتیمتری صفحه قرار دارند). در رواقع در این تکنولوژی به جای وجود تفنگ الکترونی به عنوان منبع الکترونی، هزاران تفنگ وجود دارد. FED شامل تکنولوژی ساده تری نسبت به LCD ها می باشد و می توان این صفحات را به اندازه های مختلف، تولید کرد. برای مثال، توشیبا صفحات نمایشی ارائه کرده است که حداقل 50 اینچ (حدود 130 سانتیمتر) می باشد.

کاربردهای پیش بینی شده چیست؟

لیست زیر در واقع بررسی خلاصه ای از بسیاری از زمینه هایی می باشد که در آنها، نانوتکنولوژی می تواند تغییرات اساسی ایجاد کند. برخی از این استفاده ها، به صورت جزئی در بخش بعدی، مورد بررسی قرار می گیرند.

الکترونیک و ارتباطات

استفاده از نانولایه ها، دات ها، صفحات نمایش مسطح، تکنولوژی وایرلس، وسایل و فرایندهای جدید در کل مسائل ارتباطاتی و تکنولوژی اطلاعات، موجب بهود قابل توجهی در قابلیت ذخیره سازی اطلاعات و سرعت پردازش شده است. این استفاده ها همچنین موجب کاهش هزینه ها و بهبود میزان انرژی مصرفی در کاربردهای مختلف شده است.

مواد شیمیایی و علم مواد

کاتالیست ها که در واقع بهره وری انرژی مربوط به کارخانه های مواد شیمیایی را افزایش می دهند و موجب بهبود بهره وری سوخت می شوند، در واقع بواسطه ی نانوتکنولوژی تغییر قابل توجهی پیدا خواهند کرد. از جمله این موارد می توان به استفاده از پوشش های فوق سخت و با تافنس بالا بر روی سری های برشی و مته ها و استفاده از سیال های مغناطیسی هوشمند برای آب بندی خلا و روان سازی، اشاره کرد.

داروسازی، درمان و علوم زیستی

داروهای نانوساختار، سیستم های دارورسانی و ژن رسانی برای مکان های خاص بدن، کاشت بخش های مختلف برای بخش های آسیب دیده ی بدن، سیستم های تشخیصی مورد استفاده در خانه، سنسورهای آزمایشگاه بر روی چیپ، مواد مورد استفاده در ترمیم استخوان و بافت از جمله مواردی هستند که در آینده تحت تأثیر نانوتکنولوژی قرار می گیرد.

تولید

مهندسی دقیق بر پایه ی نسل های جدید از میکروسکوپ ها و روش های اندازه گیری، موجب می شود تا فرایندها و ابزارهای جدیدی برای دستکاری ماده در سطح اتمی ایجاد شود و بدین صورت نانوپودرهایی با خواص خاص تولید شود. این بخش ها می توانند شامل سنسورهایی باشند که می تواند خرابی های ایجاد شده را تشخیص دهد.

تکنولوژی های مربوط به انرژی

انواع جدید از باتری ها، فوتوسنتز مصنوعی برای تولید انرژی تمیز، سلول های خورشیدی چاه پتانسیل، ذخیره سازی ایمن هیدروژن، صرفه جویی در انرژی با استفاده از مواد سبک تر و مقاوم تر، و تولید بردهای کوچکتر، از جمله مواردی است که نانوتکنولوژی اثرگذار می باشد.

اکتشاف های فضایی

وسایل فضایی سبک، مصرف و مدیریت انرژی از لحاظ اقتصادی، سیستم های رباتیک کوچک و با قابلیت بالا، از جمله مواردی است که در زمینه ی اکتشاف های فضایی، تحت تأثیر نانوتکنولوژی قرار خواهد گرفت.

محیط زیست

غشاهای انتخابی که می توانند برای حذف آلودگی های محیط زیستی و نمک از آب مورد استفاده قرار گیرند، در واقع به صورت نانومتری می توانند آلودگی ها را از فاضلاب های صنعتی خارج کنند. این غشاها همچنین می توانند اثرات نانوساختارها در محیط زیست و حفظ پایداری صنعتی را بواسطه ی کاهش قابل توجه در استفاده از مواد و انرژی را به همراه دارند. در حقیقت با استفاده از این غشاها، میزان منابع آلودگی کاهش و فرصت ها برای بازیافت مواد افزایش می یابد.

امنیت ملی

تشخیص و خنثی کردن عوامل شیمیایی و بیولوژیکی، به طور چشمگیری با استفاده از بردهای الکترونیکی انجام می شود. همچنین این تشخیص ها می تواند با استفاده از پوشش های نانوساختار سخت، مواد پوشش دهنده، جایگزینی خون، و سیستم های ارزیابی کننده ی کوچک، انجام شود.
استفاده از مطالب این مقاله، با ذکر منبع راسخون، بلامانع می باشد.
منبع مقاله :
Opportunities and risks of nanotechnologies/ Report in co-operation with the OECD international futures programme
 



موضوع مطلب :
شنبه 98 اردیبهشت 14 :: 6:33 عصر ::  نویسنده : مهندس سجاد شفیعی

نساجی و اثر نانوتکنولوژی بر آن نساجی و اثر نانوتکنولوژی بر آن

نویسنده: دکتر کریستوف لوترواسر
مترجم: حبیب الله علیخانی

صنعت نساجی می تواند به طور قابل توجهی بوسیله ی نانوتکنولوژی تحت تأثیر قرار گیرد. این پیش بینی شده است که میزان اثر مواد نانوتکنولوژیکی بر این صنعت صدها میلیارد دلار می باشد. علم نانو هم اکنون در حال تولید لباس های مقاوم در برابر چروک و لکه می باشد و توسعه ها بعدی در زمینه ی ایجاد عملکردها و کارایی های خاص ددر مواد پارچه ای می باشد. موفقیت های ایجاد شده در زمینه ی نانوتکنولوژی می تواند موجب توسعه ی تکنولوژی هایی شود که موجب افزایش امنیت و تأمین مناسب انرژی در سرتاسر دنیا شود. در سال 2005، گزارشی از دانشگاه Rice در تگزاس منتشر شد که طبق آن، برخی از زمینه ها شناسایی شد که نانوتکنولوژی می تواند مشارکت قابل توجهی در آنها داشته باشد. در واقع این توسعه ها به دنبال تولید پارچه های هوشمندی است که دارای عملکردهای غیر قابل پیش بینی مانند موارد زیر می باشد:
• سنسورها و سیستم های جمع آوری اطلاعات و انتقال آنها
• محافظت ها و تشخیص های چندگانه و پیچیده
• عملکردهای پزشکی و بهبود زخم ها
• خود تمیز شوندگی و عملکردهای ترمیمی
آخرین عملکرد بیان شده، نشاندهنده ی این است که چگونه نانوتکنولوژی می تواند بر روی زمینه هایی اثرگذار باشد که خارج از کاربردهای اولیه می باشد.
شرکت آمریکایی Nano-Tex هم اکنون تکنولوژی تولید پارچه های بدون لکه و مقاوم در برابر چروک خوردن را به بازار عرضه کرده است و این انتظار می رود که شرکت NanoFresh نیز به زودی این کار را انجام دهد. محققین در دانشگاه پلی تکنیک هنگ کنگ یک نانولایه از ذرات دی اکسید تیتانیم تولید کرده اند که در واقع با واکنش با نور خورشید موجب شکسته شدن کثیفی ها و سایر مواد آلی می شوند. این لایه می تواند بر روی پنبه پوشش داده شود و بدین صورت پارچه تمیز نگه داشته شود. لباس ها به سادگی و تنها نیازمند نور فرابنفش می باشند تا بدین صورت تمیز شوند. وقتی این لباس ها با نور خورشید برخورد می کنند، کثیفی از آنها زدوده می شود. در صورت اقتصادی بودن این تکنولوژی، کل صنعت شستشوی لباس تحت تأثیر قرار می گیرد.
تحقیقات انجام شده در زمینه ی نانوتکنولوژی موجب بهبود کارایی و یا ایجاد عملکردهای جدید در الیاف کامپوزیتی نانوساختار می شود. در این مواد، از پرکننده های نانومتری مانند نانوذرات (خاک رس، اکسیدهای فلزی، کربن بلک)، نانوفیبرهای گرافیتی (GNF) و نانوتیوب های کربنی (CNT) استفاده می شود. عملکرد اصلی مربوط به پرکننده های نانومتری، افزایش استحکام مکانیکی و بهبود خواص فیزیکی مانند رسانایی و رفتار آنتی استاتیک، می باشد. وقتی نانوذرات در داخل زمینه ی پلیمری پراکنده می شوند، می توانند بار بیشتری تحمل کنند و تافنس و مقاومت به سایش نیز افزایش می یابد. نانوفیبرها می توانند تنش ها را از زمینه ی پلیمری انتقال دهند و موجب افزایش استحکام کششی الیاف کامپوزیتی می شوند. بهبود کارایی فیزیکی و شیمیایی با استفاده از الیاف کامپوزیتی، به خواص نانوفیبرهای مورد استفاده بستگی دارد. اگر چه برخی از ذرات پرکننده مانند رس، اکسیدهای فلزی و کربن بلک، برای چندین دهه است که به عنوان میکرو پرکننده در مواد کامپوزیتی استفاده شده اند، کاهش در اندازه ی این مواد و ورود اندازه به گستره ی نانومتری منجر به افزایش کارایی و ایجاد علایق بازاری جدید در این مواد می شود.

نانوالیاف کربنی و نانوذرات کربنی

نانوالیاف کربنی و نانوذرات کربن بلک، متداول ترین مواد پرکننده ی با اندازه ی نانومتری هستند. نانوالیاف کربنی می توانند به صورت مؤثر موجب افزایش استحکام کششی الیاف کامپوزیتی شوند. علت این مسئله، نسبت طول به عرض بالای این مواد می باشد. این در حالی است که نانوذرات کربن که به کربن بلک مشهور می باشند، می توانند موجب بهبود مقاومت به سایش و تافنس ماده شوند. هر دوی این مواد دارای مقاومت شیمیایی و رسانایی الکتریکی بالایی هستند.

نانوذرات رس

نانوذرات رس یا نانوفلس های رسی، دارای مقاومت شیمیایی مناسب، رسانایی الکتریکی و حرارتی خوب هستند. این مواد از عبور نور UV نیز جلوگیری می کنند. الیاف کامپوزیتی تقویت شده با نانوذرات رسی دارای مقاومت در برابر شعله، آنتی UV و ضد خوردگی هستند.

نانوذرات اکسید فلزی

نانوذرات اکسید فلزی دارای قابلیت فوتوکاتالیستی، رسانایی الکتریکی، جذب UV و ظرفیت اکسید شوندگی با نور هستند. تحقیقات انجام شده در زمینه ی نانوذرات بر روی عملکردهای ضد میکروبی، خود تجزیه شوندگی و بلوکه کردن UV تمرکز دارد. این عملکردها هم در زمینه ی تولیدات نظامی و هم تولیدات غیر نظامی، مهم می باشد.

نانوتیوب های کربنی

کاربردهای بالقوه ی مربوط به CNTs، شامل تولید الیاف کامپوزیتی با استحکام و رسانایی بالا، ذخیره سازی انرژی و وسایل تبدیل انرژی، سنسورها و وسایل نمایش انتشار میدانی، می باشد. یک فیبر ساخته شده از CNT دارای استحکام و سفتی دو برابری می باشد و تافنس آن در مقایسه با سیم فولادی، 20 برابر می باشد. علاوه بر این، تافنس می تواند نسبت به تار عنکبوت، 4 برابر باشد و تافنس این مواد نسبت به الیاف کولار نیز 17 برابر است. از این رو، این الیاف می توانند کاربردهایی در زمینه ی تولید جلیقه های ضد گلوله، محافظ های الکترومغناطیسی و سایر کاربردهای مشابه، داشته باشند.

بیشتر بخوانید: فن آوری و نانو تکنولوژی(قسمت اول)

 

نانوتکنولوژی در زمینه ی فرایندهای نهایی پارچه

امولسیون های نانومقیاس که می توانند برای اتمام یا فرایندهای نهایی پارچه، مورد استفاده قرار گیرند، موجب افزایش کارایی مربوط به پارچه از جمله مقاومت در برابر لکه برداری، ایجاد خاصیت آب گریزی، آنتی استاتیک، مقاومت در برابر چروک و خواص ضد آب رفتگی، می شود.
نانوذرات اکسید فلزی و ذرات سرامیکی دارای مساحت سطح بالایی هستند و از این رو، بازده آنها نسبت به مواد با اندازه ذرات معمولی، بالاتر است. این مواد شفاف هستند و دارای رنگ تیره و یا تار نیستند. پارچه های تولید شده با استفاده از نانوذرات دی اکسید تیتانیم و اکسید منیزیم، در حال جایگزینی با پارچه های حاوی کربن فعال می شوند و می توانند محافظت های بیولوژیکی مطلوبی ایجاد کنند. فعالیت فوتوکاتالیستی مربوط به دی اکسید تیتانیم و نانوذرات اکسید منیزیم می تواند موجب شکسته شدن مواد شیمیایی و عوامل بیولوژیکی خطرناک شود.
عملیات های نهایی با استفاده از نانوذرات می تواند موجب تولید پارچه هایی با خاصیت سنسوری شود. اگر ذرات پیزوسرامیکی نانوکریستالی در تولید پارچه استفاده شود، پارچه ی نهایی تولید شده، می تواند نیروهای مکانیکی را به سیگنال های الکتریکی تبدیل کند و از این رو، این لباس های می تواند برای ارزیابی عملکردهای بدن مانند ریتم ضربان قلب مورد استفاده قرار گیرد.

نانولایه های خود آرا

در آینده ی دور، پوشش های نانولایه ای خود آرا (SAN) ممکن است موجب ایجاد چالش در زمینه ی پارچه های سنتی شود. تحقیقات در این زمینه هنوز هم در مراحل اولیه می باشد و با چالش های زیادی روبروست اما ایده ی رسوب دهی پوششی با ضخامت کمتر از یک نانومتر بر روی پارچه، و ایجاد خواص فیزیکی مناسب با استفاده از این پوشش، یکی از زمینه های جالب توجه است.

انرژی

موفقیت های ایجاد شده در زمینه ی نانوتکنولوژی می تواند موجب توسعه ی تکنولوژی هایی شود که موجب افزایش امنیت و تأمین مناسب انرژی در سرتاسر دنیا شود. در سال 2005، گزارشی از دانشگاه Rice در تگزاس منتشر شد که طبق آن، برخی از زمینه ها شناسایی شد که نانوتکنولوژی می تواند مشارکت قابل توجهی در آنها داشته باشد. اگر چه بیشترین سهم مشارکت نانوتکنولوژی در مورد کاربردهای بی نظیر و خاص مانند تولید مواد بهتر برای ادوات اکتشافی مورد استفاده در اکتشاف نفت و گاز می باشد، نانوتکنولوژی همچنین می تواند بر روی انرژی خورشیدی، بادی، انرژی های تمیز، نسل جدید از رآکتورهای هم جوشی اورانیوم، پیل های سوختی، باتری ها، تولید هیدروژن، ذخیره سازی و انتقال و شبکه های برق جدیدی اثرگذار باشد که در رواقع همه ی آنها جزء منابع انرژی محسوب می شوند. چالش هایی اصلی که نانوتکنولوژی در آنها مشارکت می کند، عبارتند از:
• کاهش در هزینه های مربوط به انرژی خورشیدی به میزان 10 برابر.
• کاهش در میزان انتشار دی اکسید کربن و تبدیل آن به اتانول
• ایجاد یک فرایند تجاری برای تبدیل نوری آب و تولید هیدروژن
• کاهش در هزینه های پیل های سوختی به میزان 10 تا 100 برابر و ایجاد مواد جدید و مستحکم تر.
• بهبود بازده و قابلیت ذخیره سازی باتری ها و ابر خازن ها به میزان 10 تا 100 برابر برای صنعت خودرو و کاربردهای تولیدی- توزیعی
• ایجاد مواد سبک تر برای ذخیره سازی هیدروژن، محفظه های هیدروژن مایع و تبدیل آسان سیستم های جذب و واجذبی هیدروژن.
حل این چالش ها سال ها طول می کشد اما انستیتوهای تحقیقاتی و عمومی هم اکنون در حال بررسی و تحقیق بر روی نانوتکنولوژی برای کاربردهای انرژی می باشند. برای مثال، آزمایشگاه Bell در حال بررسی و احتمال سنجی تولید یک میکروباتری می باشد که بعد از شارژ، 20 سال کار می کند. در واقع در این باتری ها، واکنش های شیمیایی که منجر به تخریب باتری در باتری های سنتی می شود، به تأخیر می افتد. این باتری بر اساس کشف های آزمایشگاه Bell تولید خواهد شد و در آن قطرات مایع الکترولیت در یک حالت سکون و در داخل ساختارهای میکروسکوپی حفظ می شوند که در حقیقت نانوگراس (nanograss) نامیده می شوند. این الکترولیت تا زمانی در این بخش باقی می ماند که تحریک نشود. و در صورت تحریک شدن، واکنش ایجاد شده، منجر به تولید الکتریسیته می شود. سایر محققین نیز امید دارند تا باتری هایی کاملا متفاوت را از طریق نانوتکنولوژی تولید کنند که در واقع بتواندد انرژی مورد نیاز برای به حرکت در آوردن ماشین های هیبریدی- الکتریکی را مهیا کند. در مقایسه با باتری ها، ابر خازن ها نیز می توانند ابزارهای قوی باشند. این بخش ها را می توان شارژ نمود و برای مدت ها از آنها استفاده کرد. آنها بازده بالایی دارند و زمان طولانی تری برای تخلیه ی آنها مورد نیاز است. بازده این مواد بالاست و البته این تکنولوژی در مراحل اولیه می باشد. بازار جهانی این محصولات در سال 2002 برابر با 38 میلیون دلار بوده است. البته میزان بازار جهانی این ابر خازن ها در سال 2007 به 355 میلیون دلار رسیده است.
سیستم های فوتوولتایی نیز یکی دیگر از زمینه هایی است که نانوتکنولوژی ، اثر قابل توجهی بر روی آن ایجاد کرده است. سه شرکت استارت آپ آمریکایی (Nanosolar، Nanosys و Konarka Technologies) و سرمایه گذاری های مشترک بین شرکت های Matsushita و STMicroelectronics، در حال تلاش بر روی تولید مواد با سازوکار فوتونی با قیمت پایین می باشند. این وسایل در واقع نسل پیشرفته ای از سلول های فوتوولتایی سیلیکونی کریستالی می باشند. Nanosolar ماده ای از جنس نانوسیم های اکسید فلزی تولید کرده است که می تتواند به عنوان یک مایع بر روی سطح پلاستیک اسپری شود. این لایه ها به عنوان فیلم های فوتوولتایی عمل می کنند. یک فرایند رول به رول (roll-to-roll process) مشابه با رنگ آمیزی با سرعت بالا، نیز ابداع شده است که نیازمند دماهای بالا و یا ادوات تحت خلأ نمی باشد. Nanosys تمایل دارد تا پوشش های خورشیدی خود را بر روی کاشی های پشت بام اسپری کند. و Konarka نیز در حال توسعه ی صفحات پلاستیکی است که حاوی کریستال های تیتانیم دی اکسید می باشد و با رنگ های جاذب نور، پوشش داده شده اند. این شرکت فعالیت های تحقیقاتی بر روی تولید سیستم های فوتوولتایی آلی Siemens را توسعه داده است و Konarka اخیراً نیز 18 میلیون دلار سرمایه گذاری در این زمینه انجام داده است. اگر سازه های خورشیدی بر پایه ی نانوتکنولوژی بتوانند تولید شوند (مثلا ساختمان ها و پل ها)، چشم انداز انرژی می تواند به شیوه ی مهمی تغییر کند. با قرارگیری این بخش ها بر روی اتوبوس و یا وسایل نقلیه، این بخش ها می توانند آب را از طریق الکترولیز تجزیه کرده و موجب تولید هیدروژن برای به کار انداختن پیل های سوختی شوند. در این حالت، بازنده شرکت های تولید کننده ی باتری و کلا شرکت هایی است که نتوانسته اند تا این چالش، روبرو شوند.
یک چنین توسعه هایی به حل مسائل مربوطه در مقیاس نانو وابسته می باشد اما محققین پیشرفت های سریعی را بواسطه ی طراحی نانومقیاس، بدست آورده اند. این موارد شامل تسریع کینتیک واکنش ها، افزایش اثر کاتالیستی، افزایش مقاومت محصولات در دماهای بالا و جهت دهی محصولات به سمت مراحل واکنشی بعدی، می باشد.
استفاده از مطالب این مقاله، با ذکر منبع راسخون، بلامانع می باشد.
منبع مقاله :
Opportunities and risks of nanotechnologies/ Report in co-operation with the OECD international futures programme
 



موضوع مطلب :
شنبه 98 اردیبهشت 14 :: 6:32 عصر ::  نویسنده : مهندس سجاد شفیعی

گرافن گرافن

نویسنده: یون یو
مترجم: حبیب الله علیخانی
قبل از یادگیری این مسئله که با گرافن چکار می توانیم بکنیم، باید بتوانیم بفهمیم که بر روی گرافن چه کارهایی می توانیم انجام دهیم.
همه جا گفته می شود که گرافن (صفحات کربنی) مواد معجزه آسای آینده هستند و بوسیله ی آنها می توان جلیقه های ضد گلوله ای با ضخامت یک تی شرت معمولی، درست کرد. آیا گرافن واقعاً می تواند این کار را انجام دهد؟ آیا با این ماده می توان سلول های خورشیدی شفاف مانند پنجره های معمولی، تولید کرد؟ جواب این سوال ها، مثبت است. در حقیقت گرافن می تواند این کارها را انجام دهد. این ماده شاید بتواند در تولید آسانسور فضایی که یکی از ایده های مطرح شده می باشد نیز یاری رسان باشد. مطالعه های اخیر از جمله کارهای کوهن و همکارانش در دانشگاه کرنل، نشان داده است که با ترکیب برش لیزری و روش های اریگامی و کوریگامی، می توان ساختار میکروسکوپی را از صفحات گرافیتی تولید کرد. این روش ها، در واقع برش و تازدن سنتی است که بر روی کاغذ، مورد استفاده قرار می گیرد. بنابراین، کجا می توان یک کلاه ضد گلوله خرید؟ بدبختانه، همانگونه که این ماده یک ماده ی با خواص جالب است، کار کردن با آن و با استفاده از روش های تولید سنتی، سخت است و این مسئله دلیل اصلی این موضوع است که ما هنوز این وسایل شگفت آور را در بازار مشاهده نمی کنیم.
گرافن یک ماده ی انعطاف پذیر و با تافنس بالاست، این ماده می تواند رسانای الکتریسیته باشد و رسانایی آن هزار برابر بهتر از سیلیکون (سنگ بنای وسایل الکترونیک امروزی) است. از صفحه ی گوشی های هوشمند گرفته تا واحدهای پردازش مرکزی، سیلیکون چیزی است که موجب می شود قطعات الکترونیکی، کار کنند. در اصل، یک گوشی هوشمند که در حقیقت با استفاده از گرافن ساخته می شود، تافنس بالاتری دارد، انعطاف پذیرتر، سریع تر و در نهایت بازده انرژی در آن بالاتر است. در حالی که تمام این موارد بسیار مهم به نظر می رسد، محققین ابتدا نیازمند آگاهی یافتن از نحوه ی ساخت چیزها با استفاده از گرافن هستند.
ایتای کوهن (Itai Cohen) می گوید: "محققین باید بفهمند که چگونه می توانند صفحات گرافنی را برش زده، چگونه آنها را تحت عملیات سایش قرار دهند و چگونه با اتصال آنها به هم، موجب تولید الگوهایی مناسب شوند". ایتای کوهن یک فیزیکدان از دانشگاه کرنل در نیویورک می باشد. امروزه، محققین در حال بررسی راه هایی هستند که بواسطه ی آنها بتوانند گرافن را دستکاری کنند اما آنها چگونه می توانند ساختارهایی را تولید کنند که از فولاد مستحکم ترند؟

بیشتر بخوانید: Graphene


مطالعه های اخیر از جمله کارهای کوهن و همکارانش در دانشگاه کرنل، نشان داده است که با ترکیب برش لیزری و روش های اریگامی و کوریگامی، می توان ساختار میکروسکوپی را از صفحات گرافیتی تولید کرد. این روش ها، در واقع برش و تازدن سنتی است که بر روی کاغذ، مورد استفاده قرار می گیرد.
کوهن همچنین می گوید: "موادی با خواص مکانیکی مختلف مزیت ها و محدودیت های مختلفی دارند". او همچنین اضافه می کند که "برای مثال، کشش این ماده خوب است اما به سختی می توان صفحات گرافنی را تا زد، برخلاف صفحه ی کاغذ".
دیووید نلسون، فیزیکدان دانشگاه هاروارد، روشی متفاوت اتخاذ کرده است. به جای تلاش به منظور تا کردن صفحات گرافنی در اشکال خاص، او و همکارانش می خواهند خواص مکانیکی گرافن را بواسطه ی ایجاد سوراخ در آنها، تغییر دهند. یافته های آنها در طی ماه های اخیر در کنفرانس جامعه ی فیزیکدانان آمریکا در لس آنجلس انتشار یافت.
نلسون می گوید: اگر توری های گرافنی بواسطه ی پانچ منظم سطح آنها ایجاد شود، می توان این بخش ها را در دماهای معینی مچاله کرد. بخش هایی از این تحقیق در مجله ی نیچر، به چاپ رسیده است.
از آنجایی که گرافن یک تک لایه از اتم های کربن به هم متصل است، در دماهای بالا، نوسان اتم های منفرد می تواند موجب سوراخ شدن پاره شدن صفحه شود مانند یک برگ دستمال کاغذی. صرفنظر از این مسئله که آیا پدیده، پدیده ای مفید است یا نه! این پدیده احتمالا می تواند مورد استفاده قرار گیرد. البته رسیدن به این پدیده در دماهای بالاتر از 30000 درجه ی فارنهایت، رخ می دهد.
نلسون و همکارانش به این نتیجه رسیده اند که با ایجاد توری های گرافنی مانند پارچه ی توری، آنها می توانند دما را به حدی کاهش دهند که در آن دما، صفحات گرفنی به خودی خود مچاله می شون و قابلیت تا خوردن پیدا می کنند. مدل محاسباتی آنها می تواند پیش بینی کند که در چه دمایی عمل تا خوردن بر روی یک گرافن با اندازه و دانسیته ی حفرات مشخص، رخ می دهد. در اصل، تحقیقات دیگری می تواند برای طراحی الگوهای با کارایی بالا انجام شود و بدین صورت، بتوان صفحات گرافنی را به شیوه ی خاص و در دماهای معین، تا کرد. همچنین قابلیت بازگشت به حالت اول در دماهای خاص وجود دارد، مشابه کتاب های سه بعدی.
کوهن می گوید: "در نهایت، ما می توانیم ربات هایی را توسعه دهیم که می توانند هم شنا کنند و هم راه بروند. فرض کنید که یک نانوربات با یک دست تولید شود که شما بتوانید از او بخواهید به یک بخش بپیچد و یا دوباره باز شود". در این کاربردها، گرافن موجب توسعه ی ماهیچه هایی شود که می تواند مولکول ها و سلول ها را دستکاری کنند.
استفاده از مطالب این مقاله، با ذکر منبع راسخون، بلامانع می باشد.
منبع :
https://www.insidescience.org
 



موضوع مطلب :
شنبه 98 اردیبهشت 14 :: 6:32 عصر ::  نویسنده : مهندس سجاد شفیعی

شناسایی نشتی‌های نفت و گاز شناسایی نشتی‌های نفت و گاز

نویسنده: تریسی استادتر
مترجم: حبیب الله علیخانی
بیش از 212000 مایل لوله ی نفت و گاز تنها در ایالات متحده ی آمریکا وجود دارد که در حدود 16 میلیارد بشکه نفت خام، محصولات پتروشیمی و میعانات گازی را در سال انتقال می دهند. هزاران مایل از این خطوط لوله در کف اقیانوس حرکت می کند. ارزیابی نشتی این شبکه ها یک چالش قابل توجه با راه حل های با کارایی پایین می باشد. انجام این ارزیابی ها نیز هزینه های بالایی دارد. این هزینه ها هم از لحاظ هزینه ها محیط زیستی و هم هزینه های مالی می باشند. با توجه به انجمن ایمنی و مخاطرات مواد سمی و خطوط لوله، بیش از 11700 حادثه در خط لوله ی گاز و نفت تنها در ایالات متحده و در بازه ی زمانی بین سال های 1998 تا 2017 رخ داده است. امروزه، محققین در حال کار بر روی توسعه ی سنسورهای بر پایه ی باکتری هستند که تنها چند سانتیمتر طول دارند و بر روی سطح خارجی لوله ها، نصب می شوند. این سنسورها می توانند هیدروکربن های نشت کننده را شناسایی کنند و بواسطه ی سیگنال های وایرلس، به سیستم زیرساختاری اطلاع رسانی کنند. یک ورژن بزرگتر از این سنسورها، که در حقیقت طولی برابر با یک متر دارند، می توانند برای فعالیت های تمیزکاری استفاده شوند. این تکنولوژی می تواند موجب تکمیل ادوات کنونی مورد استفاده برای ارزیابی خطوط لوله و کاهش میزان نفت و گاز نشت کننده از خطوط لوله شوند. با این کار، میزان آلودگی های محیط زیستی نیز کاهش می یابد.
"میکروارگانیزم های خاصی وجود دارد که می توانند موجب تخریب آلودگی ها شوند و یا آنها را ببلعند. این میکروارگانیزم ها موجب تولید ولتاژهای الکتریکی می شوند". این جمله را ورا گنانسوار گودی (Veera Gnaneswar Gude) گفته است. گودی یک مهندس محیط زیست در دانشگاه ایالتی میسی سی پی است. گودی و تیم تحقیقاتی او می خواهند تا این ظرفیت های طبیعی را در داخل یک سنسور، ایجاد کنند.
در حال حاضر، اپراتورهای خطوط لوله زیرساخت های خود را با استفاده از چند روش مختلف، مورد ارزیابی قرار می دهند. آنها ممکن است روش هایی را استفاده کنند که برای انجام آنها مجبورند در طول لوله حرکت کنند و از سنسورهای دستی برای بررسی احتمال انتشار گاز از ترک های مویی، استفاده کنند. آنها ممکن است شبکه را از طریق هوا، استفاده از هواپیمای بدون سرنشین، هواپیماها یا هلی کوپترهای مجهز به لیزر یا دوربین های فروسرخ، مورد ارزیابی قرار دهند. آنها همچنین می توانند یک ماشین استوانه ای مجهز به سنسور را که "خوک هوشمند" (smart pig) نامیده می شود، را از داخل لوله حرکت دهند و بدین صورت بررسی داخلی بر روی لوله را انجام دهند.
البته هنوز هم حوادث رخ می دهد. با توجه به انجمن ایمنی و مخاطرات مواد سمی و خطوط لوله، بیش از 11700 حادثه در خط لوله ی گاز و نفت تنها در ایالات متحده و در بازه ی زمانی بین سال های 1998 تا 2017 رخ داده است. این مسئله موجب بروز خسارتی معادف 7 میلیارد دلار، 1296 زخمی و 334 مرگ شده است.
سنسورهای بر پایه ی باکتری به بخش خارجی لوله متصل می شود و می تواند در زمان های بروز نشتی، آن را تشخیص داده و به بخش حفاظت، گزارش دهد.
محققین هم اکنون نشان داده اند که برخی از میکروارگانیزم ها که به صورت طبیعی در خاک و آب اقیانوس زندگی می کنند، می توانند بر روی هیدروکربن هایی مانند متان، اتان، بوتان، پروپان و پنتان، تغذیه شوند. در آپریل 2010، کلنی هایی از این میکروارگانیزم ها بر روی نفت ریخته شده از چاه نفت ماکوندو رشد کردند. سایر میکروب ها نیز وجود دارد که مواد شیمیایی را می گیرند و موجب تولید الکترون می شوند. این میکروب ها را می توان در تولید پیل های سوختی میکروبی استفاده کرد و بدین صورت موجب حذف آلودگی ها از فاضلاب و تولید برق شد.

بیشتر بخوانید: مبانی آتش‌نشانی؛ مقدمات نجات


سنسورهای جدید گودی شبیه باتری های بر پایه ی میکروارگانیزم هایی کار می کنند که در آب و رسوبات دریایی، موجود می باشند. در یک بخش آندی از جنس غشای توخالی وجود دارد که حاوی یک غلظت از میکروب های هیدروکربنی زنده می باشند. وقتی مولکول ها با هیدروکربن های عبوری از غشای متخلخل، واکنش می دهند، میکرواگانیزم هیدروکربن را می خورد و موجب تولید الکترون ها در میان یک رسانا می شود. این جریان اندازه گیری و به بخش مورد نظر، ارسال می شود.
تحت شرایط نرمال، وقتی هیچ نشتی وجود ندارد، میکروب ها از ترکیبات آلی موجود در آب و یا خاک، استفاده می کنند. اما وقتی آنها بتوانند هیدروکربن پیدا کنند، متابولیسم آنها افزایش می یابد و این مسئله موجب تولید الکترون می شود. این تولید الکترون بوسیله ی مقاومت سنج و یا یک مدار کوچک که در کاتد قرار داده می شود، اندازه گیری می شود. اگر جریان الکترونی از یک حدی بیشتر شود، سنسور می تواند یک سیگنال را از طریق شبکه ی وایرلس به متخصص ارسال کند.
کریس ردی (Chris Reddy)، محقق ارشد در شرکت Woods Hole Oceanographic گفته است که او فکر می کند که ایده ی استفاده از باکتری در سنسورهایی که به لوله های گاز و نفت متصل می شوند، ایده ی هوشمندانه ای است. او می گوید: باکتری قابلیت تخریب میکروبی بالایی دارد". اما او می گوید، برخی اوقات، باکتری خوردن هیدروکربن ها را متوقف می کند.
در حقیقت این سنسورها مانند یک رستوران می باشند که در داخل آن، هم میگو و هم دنده ی پخته وجود دارد. بنابراین، در زمان خوردن مواد غذایی، باکتری می تواند حق انتخاب داشته باشد. بنابراین، این سخت است که بتوان یک باکتری را به طور کامل برای انجام کاری خاص، اختصاص داد.
کریس ردی اضافه کرد که "آنها با چالش های جالبی روبرو هستند. در صورتی که موفق به این کار شوند، بسیار عالی می شود".
گودی امروز تحقیقات خود بر روی این نوع سنسور را در انجمن مواد شیمیایی آمریا در نئو اورلئان، ارائه کرد. او گفت که احتمالا می تواند یک سنسور طراحی کند که نه تنها بتواند بر روی لوله ها کار کند، بلکه بتوان از آن، بر روی تانکرها و وسایل ذخیره سازی نیز استفاده کرد. تا اینجا، او توانسته است سیستم بزرگتری را توسعه دهد که می تواند تکه های نفتی را بخورد.
گودی می گوید:
"ما می خواهیم سنسوری توسعه دهیم که بتواند به صورت واقعی راه حلی مناسب برای این مشکل، پیدا کند".
استفاده از مطالب این مقاله با ذکر منبع راسخون، بلامانع می باشد.
منبع تحقیق :
https://www.insidescience.org
 



موضوع مطلب :

لباس هایی که می توانند احساسات شما را درک کنند لباس هایی که می توانند احساسات شما را درک کنند

نویسنده: کاترین گامون
مترجم: حبیب الله علیخانی
استفان جورجوتسا دارای تکنولوژی است که نیازمند یک کاربرد می باشد. جورجوتسا که یک مهندس اپتیک است، می داند که چگونه می توان فیبرها را در صنعت ارتباطات مورد استفاده قرار داد و تلاش کرد تا این ایده فیبر انعطاف پذیر را برای پارچه استفاده کند. اما او کاملا نمی داند که بهترین روش برای استفاده از این تکنولوژی در پارچه چیست؟ این مسئله تا زمانی ادامه یافت که او مدیر تحقیقات بیمارستان آموزشی شهر کبک کانادا را ملاقات کرد.
در آنجا، او فهمید که یک پرستار برای ارزیابی کودکان تازه متولد شده مورد استفاده قرار می گیرد. این پرستار شرایط کودکان تازه متولد شده را در روز اول زندگی آنها، مورد ارزیابی قرار می گیرد. مشکل این است که ارزیابی معمولاً نیازمند دستگاه هایی است که باید به بدن بچه بسته شوند. برخی اوقات همین وسایل موجب گریه کردن نوزاد می شوند. این وضعیت، ایده ی استفاده از سنسور ارزیابی را مطرح می کند که موجب محدود شدن استفاده کننده نمی شود. هر فردی می تواند یک سنسور محیطی در حال حرکت باشد که داده های مربوط به سلامت او می تواند به مراکز مربوطه ارسال شود. این داده ها همچنین می تواند به بخش های مراقبتی نیز ارسال شوند. با این کار، انقلابی در زمینه ی مانیتورینگ افراد ایجاد می شود. جورجوتسا و تیم همکار تی شرتی تولید کردند که می تواند ضربان قلب و تنفس را ارزیابی کند. این طراحی باید به گونه ای باشد که بتواند سیگنال ها را از فردی که لباس را پوشیده، انتقال دهد. او می گوید: "ایده در حقیقت این است که این لباس مشابه یک تی شرت معمولی عمل کند".
این تیشرت که در طی ماه های اخیر در مجله ی سنسورها معرفی شده است، هیچ سیم و یا الکترودی در داخل خود ندارد. تی شرت دارای یک آنتن انعطاف پذیر می باشد که در سطح سینه قرار دارد.
جورجوتسا می گوید: "وقتی شما تنفس می کنید، حجم هوای موجود در ریه ها تغییر می کند و از این رو، خواص الکتریکی مربوط به هوا موجب بروز ویژگی های الکتریکی مختلف در بدن می شود. از آنجایی که انسان ها به یک شیوه ی خاص نفس می کشند، این الگو برای فرد استفاده کننده از تی شرت، ثبت می گردد".
محققین فیبرها را بواسطه ی ماده ی مخصوصی پوشش می دهند که در حقیقت شستشوی تی شرت تا 20 بار، هیچ اثری بر روی کیفیت ثبت اطلاعات ندارد. آنها در تلاشند تا با تولید تعداد قابل توجهی از این تی شرت ها، بتوانند آنها را در آزمایش های بالینی استفاده کنند و در حقیقت آنها را ادوات ارزیابی و مانیتورینگی مقایسه کنند که در مراکز درمانی، یافت می شود.
تی شرت تولیدی این گروه نه تنها ایمن است بلکه موجب ارزیابی فاکتورهای بسیاری می شود. محققین از زمینه های مختلف در حال کار بر روی روشی جدید برای ارزیابی افراد با استفاده از لباس هستند (حتی ارزیابی ها از دور). در واقع لباس می تواند علائم کمک های اورژانسی را ارسال کند؛ می تواند وضعیت جسمانی افراد بستری در بیمارستان را ارزیابی کند و همچنین می تواند برای بچه های تازه متولد شده، مفید باشد.
نوزادان تازه متولد شده نیز بوسیله ی سونا شو ( Sona Shah) مورد بررسی قرار گرفته است. این فرد دانشجوی فارغ التحصیل شیکاگو می باشد که در حال توسعه ی یک برنامه ی بین الملی و مهندسی برای مراقبت و سلامت می باشد. او در مورد مرگ و میر نوزادان تازه متولد شده، مطالبی خوانده است و از این رو در پی پیدا کردن یک راه مطلوب برای کاهش این مسئله است.
او می گوید: "هیچ نوزاد بیماری وجود ندارد، بلکه تعداد کافی پرستار برای مراقبت از آنها وجود ندارد". تقریباً 3 میلیون نوزاد در ماه اول عمر خود می میرند و 98 % از این مرگ و میرها در کشورهای در حال توسعه، رخ می دهد.
شو و همکارانش کلاهی برای نوزادان طراحی کرده اند که بوسیله ی آن، سیگنال های حیاتی نوزاد ثبت و ارزیابی می شود. همچنین در صورت بروز مشکل، سیستم سریعاً اطلاع رسانی می کند. این کلاه جداولی از ضربان قلب، میزان اکسیژن اشباع و دمای بدن نوزاد را در خود حفظ می کند. این اطلاعات به صورت نمونه وار در بخش مراقبت ویژه ی نوزادان، ثبت می شود.
اطلاعات سپس به یک تبلت ارسال می شود که بوسیله ی پرستار مورد بررسی و چک قرار می گیرد. شو می گوید: "نهایتاً امیدوارم که این کار را در بخش های روستایی نیز انجام دهیم و بتوانیم با توسعه ی یک اپلیکیشن مبایلی، این اطلاعات را به صورت مجتمع به دکتر مربوطه ارسال کنیم".
سیستم طراحی شده بوسیله ی این گروه، قابلیت حفظ شارژ خود را تا 5 الی 7 روز دارند. هر کلاه تنها قیمتی برابر با 75 دلار دارد و شرکت در حال تلاش است تا این کلاه را به همراه پکیجی حاوی تبلت و نرم افزار نیز به فروش برساند. آنها این محصول را ابتدا در اوگاندا به بازار عرضه کرده اند و امید دارند که بتوانند این جاهای دیگری که امکانات کم است نیز ارسال کنند.
جسی جور (Jesse Jur) محقق صنعت نساجی در دانشگاه ایالتی کالیفرنیای شمالی می گوید: "لباس بهترین روش برای جمع آوری اطلاعات از بدن می باشد". او می گوید: "مطمئن باشید که ما هم اکنون دست بندها و یا گردنبندهایی وجود دارد که این کار را انجام می دهد؛ اما چیزی که در مورد لباس متمایز است، این ات که ما به سطح قابل توجهی از بدن دسترسی داریم و از این رو، می توانیم قضاوت بهتری از وضعیت بدن، پیدا کنیم". علاوه بر این، شما می توانید این داده ها را به صورت الکترونیکی، مشاهده کنید.
آزمایشگاه آنها یک بخش الکترونیک برای پوشاک، طراحی کرده است. آنها یک تی شرت طراحی کرده اند که کارایی قلب را ارزیابی کرده و داده های مربوطه را به یک گوشی هوشمند، ارسال می کند. سایر تحقیقات نیز در حال تولید انواع جدیدی از سنسورها می باشد که می توانند اطلاعاتی از جمله، تنش، فاکتورهای محیطی مانند کیفیت هوا و ... را اندازه گیری و ارزیابی کنند.

بیشتر بخوانید: چگونه لباس انتخاب کنیم؟


او می گوید: "بیماری های قلبی یکی از عوامل مرگ و میر قابل توجه در آتش نشان ها می باشد. همچنین ارزیابی میزان تنش و بازده افسران پلیس و سربازان نیز می تواند بسیار مفید باشد". این کاربردها می توانند سنگ بنای مناسبی برای گسترش کاربردهای این وسایل ایجاد کنند".
آزمایشگاه او همچنین در حال پیدا کردن راهی است که لباس ها بتوانند انرژی خود را از انرژی بدن تأمین کنند و از این رو، نیازی به باتری نداشته باشند. او می گوید: "هدف این است که نیازی به شارژ وسیله نباشد".
او به این نکته اشاره می کند که حرارت بدن و همچنین حرکت هر فرد می تواند 10 وات برق تولید کند. این میزان از برق، بیشتر از چیزی است که برای وسایل پزشکی، مورد نیاز است.
در حقیقت، هر فردی می تواند یک سنسور محیطی در حال حرکت باشد که داده های مربوط به سلامت او می تواند به مراکز مربوطه ارسال شود. این داده ها همچنین می تواند به بخش های مراقبتی نیز ارسال شوند. با این کار، انقلابی در زمینه ی مانیتورینگ افراد ایجاد می شود.
شو می گوید: "سنسورهای با قابلیت پوشیده شدن، بخش های جالب توجه با ویژگی های شاخص می باشند". " آنها به سهولت استفاده می شوند و علاوه بر کوچکی، ارزان قیمت نیز می باشند".
استفاده از مطالب این مقاله با ذکر منبع راسخون، بلامانع می باشد.
منبع تحقیق :
https://www.insidescience.org
 



موضوع مطلب :

نویسنده: مارشا لوییس
مترجم: حبیب الله علیخانی


یک سنسور دهانی می تواند قلب شما را مورد ارزیابی قرار دهد

پاتریک مرسر (Patrick Mercier) یک مهندس الکترونیک و کامپیوتر در دانشگاه کالیفرنیا، می گوید: "بزاق مایع غنی است. این ماده دارای مواد شیمیایی مختلفی است و شما می توانید اطلاعات فیزیولوژی زیادی را از طریق آنالیز بزاق بدست آورید".

در آزمایشگاه نانومهندسی یو سی سندیاگو، محققین سنسورهای محافظ دهانی توسعه داده اند که از بزاق استفاده می کنند ومحققین در حال کار بر روی تولید برچسب های نهایی می باشند که بر روی لبه ی لباس های تعبیه می شوند و بدین صورت ایمنی آنها در حین پوشیدن، مورد تأیید قرار می گیرد. بنابراین، با پیشرفت این تکنولوژی ها، نیاز به مراجعه ی حضوری به دکتر به مراتب کاهش می یابد. دیگر نیازی به نمونه ی خون ندارند. با استفاده از نمونه ی بزاق، میزان تغییر در مارکرهای سلامت موجود در بدن با این وسایل، اندازه گیری می شود. این دهان بندها شامل یک بیوسنسور هستند که اولین نسل از بیوسنسورهای بسیار کوچک از این جنس است.

مرسر می گوید: "این روش، یک ابزار تشخیصی قوی است".
جویانگ کیم، دانشجوی فارغ التحصیل مهندسی مواد در یو سی سن دیاگو می گوید: "این وسیله می توانند به صورت پیوسته اطلاعات مربوط به سلامت شما را ارزیابی کند".


این سنسورها می تواند تغییرات ایجاد شده در اسید اوریک موجود در بزاق را اندازه گیری کنند و میزان بالای اسید اوریک می تواند موجب افزایش ریسک ابتلا به دیابت شود. سایر سنسورها نیز می تواند مقادیر بالا لاکتیک را ارزیابی کند. این ماده به خستگی ماهیچه ای وابسته می باشد. خستگی ماهیچه ای یکی از دغدغه های مهم در بین ورزش کاران است.

بیشتر بخوانید: سنسور یا حسگر


اطلاعات می تواند به یک گوشی هوشمند و یا لپ تاپ ارسال شود. این وسیله، یک ابزار مفید برای ارزیابی سلامت ورزشکار در طی یک بازی و یا میزان تنش وارده به سربازان در میدان جنگ، می باشد.
محققین در حال کار بر روی تولید برچسب های نهایی می باشند که بر روی لبه ی لباس های تعبیه می شوند و بدین صورت ایمنی آنها در حین پوشیدن، مورد تأیید قرار می گیرد.
بنابراین، با پیشرفت این تکنولوژی ها، نیاز به مراجعه ی حضوری به دکتر به مراتب کاهش می یابد.

منبع
https://www.insidescience.org




موضوع مطلب :

نویسنده: پیتر جیانی
مترجم: حبیب الله علیخانی


آزمایشگاه کوچک در یک سوزن، می تواند تشخیص های سریع را امکان پذیر کند.

نمونه های اولیه که در واقع تکنولوژی "آزمایشگاه بر روی چیپ" نامیده می شوند، قابلیت خوبی را در بررسی مسمومیت کبد در موش ها نشان دادند. این مسمومیت در حقیقت یکی از اثرات جانبی انجام شیمی درمانی در انسان ها می باشد.
استفن ونگ از انستیتوی تحقیقاتی متودیست هوستون و مرکز پزشکی درمانی کرنل ویل می گوید: "این تکنولوژی در واقع تمام فرایندهای آزمایشگاهی را در یک آزمون جمع می کند، بدون آنکه در این میان، انسان دخیل باشد".

تشخیص شرایط پزشکی به نتایج مربوط به آزمون های خون وابسته می باشد. این آزمون ها منجر به تشخیص سمیت و یا برهمکنش های بالقوه با داروهاست. بدست آوردن نتایج آزمون می تواند به صورت نمونه وار یک هفته طول بکشد. به هر حال، وانگ می گوید: "استفاده از روش ما موجب می شود تا این نتیجه، در زمانی کمتر از یک ساعت، حاصل شود".
طراحی ثبت اختراع شده شامل اجزای منفردی از آزمایشگاه شیمی به همراه بسته بندی های بسیار کوچکی است که به 32 سوزن آمپولی شکل، وصل می شوند. این سوزن ها اندازه ای مشابه سوزن های تزریق دارند.

وانگ می گوید: "این مسئله یک تغییر در الگوی مورد استفاده می باشد، یک تکنولوژی واقعا در هم گسیخته و متفاوت". او همچنین می گوید: "شما دیگر سعی نمی کنید تا به آزمایشگاه بروید و بخواهید از رویه های موجود در تشخیص بیماری ها استفاده کنید. تنها کافی است که یک وسیله ی وایرلس را به گوشی همراه خود وصل کنید".آزمایشگاه در داخل سوزن، برای انجام چندین مرحله در نمونه گیری بافت بیماران و در هر شرایط پزشکی خاص، استفاده می شود. این آزمایشگاه نمونه را استخراج کرده، آن را آماده سازی می کند، مواد مورد نظر را تغلیظ می کند و در نهایت میزان ژن های مرتبط با بیماری مد نظر را اندازه گیری می کند.
محققین علم پزشکی می توانند از این تکنولوژی در ادارات سلامت، خانه ی بیماران و حتی در نقاط دور دست استفاده کنند و بوسیله ی آن، تشخیص هایی را که به صورت طبیعی در بیمارستان انجام می شود را در هر مکانی انجام دهند.

وانگ می گوید: "این وسیله، در حقیقت یک وسیله ی کنترل شونده بوسیله ی موبایل است. اما این وسیله همچنین می تواند در حین عمل جراحی مورد استفاده قرار گیرد و به دکترها و بیماران اجازه داده شود تا در مورد گزینه های درمان در زمان هایی هر چه زودتر، تصمیم گیری کنند".
شاری روبین، یک متخصص امراض داخلی در بیمارستان متودیست هوستون می گوید: "این روش، روش بسیار جالبی است". البته او در این تحقیق مشارکت ندارد.

او همچنین می گوید: "بسیاری از بیماران ما از مناطق دوردست به مراکز بیمارستانی سفر می کنند تا آزمایش خون بدهند. اگر شما این کار را در خانه برای آنها انجام دهید، این مسئله برای بیماران بسیار خوب است. هر چه بتوان بیماران را از محیط بیمارستان دور نگه داشت، از لحاظ روحی برای آنها بهتر است".
او به این نکته اشاره کرده است که توسعه دهنده های این تکنولوژی نیازمند متقاعد کردن بیماران در استفاده از این وسیله در خانه باشند.
این تکنولوژی از "تکنولوژی آزمایشگاه بر روی چیپ" نشئت گرفته است.

وانگ می گوید: "این وسیله، در اصل شامل یکی از چندین عملکرد یک چیپ منفرد است که در حقیقت می تواند ناحیه ای به مساحت چند میلی متر و یا چند سانتیمتر را اندازه گیری کند". این روش از تکنولوژی میکروسیال استفاده می کند. این تکنولوژی در واقع با حجم های بسیار کوچک از مایع کار می کند. همچنین این وسیله شامل نیمه رساناهایی می باشد که در قلب هر کامپیوتری یافت می شود.
آزمایشگاه در داخل سوزن، برای انجام چندین مرحله در نمونه گیری بافت بیماران و در هر شرایط پزشکی خاص، استفاده می شود. این آزمایشگاه نمونه را استخراج کرده، آن را آماده سازی می کند، مواد مورد نظر را تغلیظ می کند و در نهایت میزان ژن های مرتبط با بیماری مد نظر را اندازه گیری می کند.

بیشتر بخوانید: آزمایشگاه ( Laboratory)


نمونه ی آزمایشگاهی از این دستگاه شامل دو چیپ می باشد. اولین چیپ سه وظیفه انجام می دهد در حالی که دومین چیپ شامل مواد شیمیایی و بخش های انجام فرایند PCR می باشد.
وانگ می گوید: "نمونه ی آزمایشی دارای دو چیپ به همراه بخش های قرائت می باشد. ما اثبات کردیم که این دو بخش می توانند در یک بسته بندی قرار گیرند".
برای انجام آزمون در نمونه ی سوزن ساخته شده، این تیم، میزان سمیت کبد را با استفاده از دو مارکر ژنتیکی، اندازه گیری کردند.

گروه وانگ موجب سمی شدن کبد موش هایی شد و سپس از این سوزان ها براس شناسایی مارکرهای مورد نظر، استفاده کرد. آنها نتایج خود را به صورت آنلاین در مجله ی آزمایشگاه بر روی چیپ، به چاپ رساندند.
این محققین بر این مسئله تأکید کرده اند که آزمایشگاه آنها هنوز هم در مراحل اولیه می باشد.
تیم وانگ به همراه تیم مشارکت کننده ی سنگاپوری، در حال توسعه ی ورژن قابل استفاده از این تکنولوژی می باشند.

این تیم ها همچنین تصمیم گرفتند تا روش های مورد نیاز برای انجام آزمون بر روی انسان ها با استفاده از این سوزن ها را تدوین کنند. این آزمون ها به جستجوی مارکرهای ژنتیکی مشابه مارکرهای مربوط به موش ها می باشد. اما در این مرحله، آنها با مقررات دولتی سرسختانه ای دست و پنجره نرم می کنند.
این تیم تحقیقاتی همچنین کمک می کنند تا این روش ها بر روی شرایط پزشکی مختلف اعمال شوند.
زیپینگ یانگ، سرپرست برنامه های تحقیقاتی تیم سنگاپوری می گوید: "ما در حال برنامه ریزی برای انجام تست بر روی بافت ها و مایعات بدن هستیم تا بتوانیم سایر بیماری های بدن را نیز بواسطه ی این روش، شناسایی کنیم".

وانگ گفته است که: "این تنها نمونه ی آزمایشی است و این وسیله می تواند بهبودهای قابل توجهی را در کاربردهای بالینی از خود نشان دهد".
وانگ گفته است که: " این روش، سریع، بدون ریسک و ارزان قیمت است". این وسیله همچنین موجب می شود تا مفهوم آزمایشگاه بر روی چیپ بتواند به طور مطلوبی به حقیقت بپیوندد.
وانگ گفته است که: "در دراز مدت، می توان به مسائل جزئی نیز پرداخت. ما سعی می کنیم تا بیمارستان را به خانه ی بیماران بیاوریم نه بیماران را به بیمارستان".

منبع
https://www.insidescience.org
استفاده از مطالب این مقاله با ذکر منبع راسخون، بلامانع می باشد.




موضوع مطلب :
<   1   2   3   4   5   >>   >   
پیوندها
لوگو
http://www.telegram.me/sajjadshafiee_ir
.
.
.

رشته مهندسی پلیمر نسبت به رشته‌های مهندسی دیگر تقریبا جوان است و شکوفایی آن از زمان جنگ جهانی دوم آغاز شده است. اما به دلیل کاربرد روزافزون پلیمر در صنایع مختلف، این رشته به سرعت رشد کرده و امروزه جزو یکی از رشته‌های مهم کشورهای صنعتی پیشرفته می‌باشد.

هدف رشته مهندسی صنایع پلیمر تولید کلیه محصولات پلیمری از قبیل لاستیک، پلاستیک، الاستومر، چسب‌ها، رزین و سایر مواد مورد نیاز صنعت است. برای مثال طراحی و تولید تایر ماشین در صنایع لاستیک، لوله‌های پلی‌اتیلن در صنایع پلاستیک و انواع فایبرگلاسها در کامپوزیت به یاری متخصصان مهندسی صنایع پلیمر انجام می‌گیرد یا حتی در این رشته شکل‌دهی رزین‌ها نیز مطرح است که برای مثال می‌توان به ساخت ملامین اشاره کرد.حتی کیسه‌های پلاستیکی و روکش ظروف نچسب ( تفلون ) از مواد پلیمری می‌باشند. در واقع در رشته مهندسی صنایع پلیمر هر آنچه که به این مواد بر می‌گردد، مورد مطالعه و بررسی قرار می‌گیرد. البته پلیمرها فقط کاربرد صنعتی ندارند بلکه کاربرد پزشکی نیز دارند. مثلا اگر کشکک زانوی یک نفر آسیب ببیند و ترمیم آن امکان‌پذیر نباشد، شبیه به همان کشکک زانو را با مواد پلیمری درست می‌کنند و بر روی زانو قرار می‌دهند و یا دندان مصنوعی و لنزهای چشمی همه از مواد پلیمری ساخته می‌شوند که به این مواد پلیمری «پلیمرهای زیستی» می‌گویند.

فرصت‌های شغلی:

در صنعت پوشاک پلیمرها در تولید پاپوش‌ها، تن‌پوشها و کف‌پوشها بسیار موثر هستند. در صنایع حمل و نقل زمینی (خودروسازی، قطار و ... )، هوایی ( هواپیما و بالگرد) و دریایی (کشتی‌ها و ...) پلیمرها حضوری چشمگیر دارند، و بالاخره در صنایع نظامی، پزشکی، کشاورزی و بسته‌بندی کاربرد مواد پلیمری بسیار گسترده است.بدر صنعت پوشاک نیز پلیمرها در تولید پاپوش‌ها، تن‌پوشها و کف‌پوشها بسیار موثر هستند. در صنایع حمل و نقل زمینی (خودروسازی، قطار و ... )، هوایی ( هواپیما و بالگرد) و دریایی (کشتی‌ها و ...) پلیمرها حضوری چشمگیر دارند، و بالاخره در صنایع نظامی، پزشکی، کشاورزی و بسته‌بندی کاربرد مواد پلیمری بسیار گسترده است. باتوجه به کاربرد وسیع پلیمرها در صنایع، فارغ‌التحصیلان این رشته توانایی‌های کافی در زمینه‌های ایجاد و برنامه‌ریزی واحدهای تولیدی تبدیل پلیمر خام به مواد مصرفی و اشتغا
آمار وبلاگ
  • بازدید امروز: 898
  • بازدید دیروز: 1055
  • کل بازدیدها: 5165016